// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // RepeatedField and RepeatedPtrField are used by generated protocol message // classes to manipulate repeated fields. These classes are very similar to // STL's vector, but include a number of optimizations found to be useful // specifically in the case of Protocol Buffers. RepeatedPtrField is // particularly different from STL vector as it manages ownership of the // pointers that it contains. // // This header covers RepeatedPtrField. // IWYU pragma: private, include "net/proto2/public/repeated_field.h" #ifndef GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__ #define GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__ #include #ifdef _MSC_VER // This is required for min/max on VS2013 only. #include #endif #include #include #include #include #include #include #include #include #include // Must be included last. #include #ifdef SWIG #error "You cannot SWIG proto headers" #endif namespace google { namespace protobuf { class Message; class Reflection; template struct WeakRepeatedPtrField; namespace internal { class MergePartialFromCodedStreamHelper; class SwapFieldHelper; } // namespace internal namespace internal { template class RepeatedPtrIterator; template class RepeatedPtrOverPtrsIterator; } // namespace internal namespace internal { // type-traits helper for RepeatedPtrFieldBase: we only want to invoke // arena-related "copy if on different arena" behavior if the necessary methods // exist on the contained type. In particular, we rely on MergeFrom() existing // as a general proxy for the fact that a copy will work, and we also provide a // specific override for std::string*. template struct TypeImplementsMergeBehaviorProbeForMergeFrom { typedef char HasMerge; typedef long HasNoMerge; // We accept either of: // - void MergeFrom(const T& other) // - bool MergeFrom(const T& other) // // We mangle these names a bit to avoid compatibility issues in 'unclean' // include environments that may have, e.g., "#define test ..." (yes, this // exists). template struct CheckType; template static HasMerge Check(CheckType*); template static HasMerge Check(CheckType*); template static HasNoMerge Check(...); // Resolves to either std::true_type or std::false_type. typedef std::integral_constant(0)) == sizeof(HasMerge))> type; }; template struct TypeImplementsMergeBehavior : TypeImplementsMergeBehaviorProbeForMergeFrom {}; template <> struct TypeImplementsMergeBehavior { typedef std::true_type type; }; template struct IsMovable : std::integral_constant::value && std::is_move_assignable::value> {}; // This is the common base class for RepeatedPtrFields. It deals only in void* // pointers. Users should not use this interface directly. // // The methods of this interface correspond to the methods of RepeatedPtrField, // but may have a template argument called TypeHandler. Its signature is: // class TypeHandler { // public: // typedef MyType Type; // static Type* New(); // static Type* NewFromPrototype(const Type* prototype, // Arena* arena); // static void Delete(Type*); // static void Clear(Type*); // static void Merge(const Type& from, Type* to); // // // Only needs to be implemented if SpaceUsedExcludingSelf() is called. // static int SpaceUsedLong(const Type&); // }; class PROTOBUF_EXPORT RepeatedPtrFieldBase { protected: constexpr RepeatedPtrFieldBase() : arena_(nullptr), current_size_(0), total_size_(0), rep_(nullptr) {} explicit RepeatedPtrFieldBase(Arena* arena) : arena_(arena), current_size_(0), total_size_(0), rep_(nullptr) {} RepeatedPtrFieldBase(const RepeatedPtrFieldBase&) = delete; RepeatedPtrFieldBase& operator=(const RepeatedPtrFieldBase&) = delete; ~RepeatedPtrFieldBase() { #ifndef NDEBUG // Try to trigger segfault / asan failure in non-opt builds. If arena_ // lifetime has ended before the destructor. if (arena_) (void)arena_->SpaceAllocated(); #endif } bool empty() const { return current_size_ == 0; } int size() const { return current_size_; } int Capacity() const { return total_size_; } template const typename TypeHandler::Type& at(int index) const { GOOGLE_CHECK_GE(index, 0); GOOGLE_CHECK_LT(index, current_size_); return *cast(rep_->elements[index]); } template typename TypeHandler::Type& at(int index) { GOOGLE_CHECK_GE(index, 0); GOOGLE_CHECK_LT(index, current_size_); return *cast(rep_->elements[index]); } template typename TypeHandler::Type* Mutable(int index) { GOOGLE_DCHECK_GE(index, 0); GOOGLE_DCHECK_LT(index, current_size_); return cast(rep_->elements[index]); } template typename TypeHandler::Type* Add( const typename TypeHandler::Type* prototype = nullptr) { if (rep_ != nullptr && current_size_ < rep_->allocated_size) { return cast(rep_->elements[current_size_++]); } typename TypeHandler::Type* result = TypeHandler::NewFromPrototype(prototype, arena_); return reinterpret_cast( AddOutOfLineHelper(result)); } template < typename TypeHandler, typename std::enable_if::type* = nullptr> inline void Add(typename TypeHandler::Type&& value) { if (rep_ != nullptr && current_size_ < rep_->allocated_size) { *cast(rep_->elements[current_size_++]) = std::move(value); return; } if (!rep_ || rep_->allocated_size == total_size_) { Reserve(total_size_ + 1); } ++rep_->allocated_size; typename TypeHandler::Type* result = TypeHandler::New(arena_, std::move(value)); rep_->elements[current_size_++] = result; } template void Delete(int index) { GOOGLE_DCHECK_GE(index, 0); GOOGLE_DCHECK_LT(index, current_size_); TypeHandler::Delete(cast(rep_->elements[index]), arena_); } // Must be called from destructor. template void Destroy() { if (rep_ != nullptr && arena_ == nullptr) { int n = rep_->allocated_size; void* const* elements = rep_->elements; for (int i = 0; i < n; i++) { TypeHandler::Delete(cast(elements[i]), nullptr); } const size_t size = total_size_ * sizeof(elements[0]) + kRepHeaderSize; internal::SizedDelete(rep_, size); } rep_ = nullptr; } bool NeedsDestroy() const { return rep_ != nullptr && arena_ == nullptr; } void DestroyProtos(); // implemented in the cc file public: // The next few methods are public so that they can be called from generated // code when implicit weak fields are used, but they should never be called by // application code. template const typename TypeHandler::Type& Get(int index) const { GOOGLE_DCHECK_GE(index, 0); GOOGLE_DCHECK_LT(index, current_size_); return *cast(rep_->elements[index]); } // Creates and adds an element using the given prototype, without introducing // a link-time dependency on the concrete message type. This method is used to // implement implicit weak fields. The prototype may be nullptr, in which case // an ImplicitWeakMessage will be used as a placeholder. MessageLite* AddWeak(const MessageLite* prototype); template void Clear() { const int n = current_size_; GOOGLE_DCHECK_GE(n, 0); if (n > 0) { void* const* elements = rep_->elements; int i = 0; do { TypeHandler::Clear(cast(elements[i++])); } while (i < n); current_size_ = 0; } } template void MergeFrom(const RepeatedPtrFieldBase& other) { // To avoid unnecessary code duplication and reduce binary size, we use a // layered approach to implementing MergeFrom(). The toplevel method is // templated, so we get a small thunk per concrete message type in the // binary. This calls a shared implementation with most of the logic, // passing a function pointer to another type-specific piece of code that // calls the object-allocate and merge handlers. GOOGLE_DCHECK_NE(&other, this); if (other.current_size_ == 0) return; MergeFromInternal(other, &RepeatedPtrFieldBase::MergeFromInnerLoop); } inline void InternalSwap(RepeatedPtrFieldBase* rhs) { GOOGLE_DCHECK(this != rhs); // Swap all fields at once. auto temp = std::make_tuple(rhs->arena_, rhs->current_size_, rhs->total_size_, rhs->rep_); std::tie(rhs->arena_, rhs->current_size_, rhs->total_size_, rhs->rep_) = std::make_tuple(arena_, current_size_, total_size_, rep_); std::tie(arena_, current_size_, total_size_, rep_) = temp; } protected: template void RemoveLast() { GOOGLE_DCHECK_GT(current_size_, 0); TypeHandler::Clear(cast(rep_->elements[--current_size_])); } template void CopyFrom(const RepeatedPtrFieldBase& other) { if (&other == this) return; RepeatedPtrFieldBase::Clear(); RepeatedPtrFieldBase::MergeFrom(other); } void CloseGap(int start, int num); // implemented in the cc file void Reserve(int new_size); // implemented in the cc file template static inline typename TypeHandler::Type* copy( typename TypeHandler::Type* value) { auto* new_value = TypeHandler::NewFromPrototype(value, nullptr); TypeHandler::Merge(*value, new_value); return new_value; } // Used for constructing iterators. void* const* raw_data() const { return rep_ ? rep_->elements : nullptr; } void** raw_mutable_data() const { return rep_ ? const_cast(rep_->elements) : nullptr; } template typename TypeHandler::Type** mutable_data() { // TODO(kenton): Breaks C++ aliasing rules. We should probably remove this // method entirely. return reinterpret_cast(raw_mutable_data()); } template const typename TypeHandler::Type* const* data() const { // TODO(kenton): Breaks C++ aliasing rules. We should probably remove this // method entirely. return reinterpret_cast( raw_data()); } template PROTOBUF_NDEBUG_INLINE void Swap(RepeatedPtrFieldBase* other) { #ifdef PROTOBUF_FORCE_COPY_IN_SWAP if (GetOwningArena() != nullptr && GetOwningArena() == other->GetOwningArena()) #else // PROTOBUF_FORCE_COPY_IN_SWAP if (GetOwningArena() == other->GetOwningArena()) #endif // !PROTOBUF_FORCE_COPY_IN_SWAP { InternalSwap(other); } else { SwapFallback(other); } } void SwapElements(int index1, int index2) { using std::swap; // enable ADL with fallback swap(rep_->elements[index1], rep_->elements[index2]); } template size_t SpaceUsedExcludingSelfLong() const { size_t allocated_bytes = static_cast(total_size_) * sizeof(void*); if (rep_ != nullptr) { for (int i = 0; i < rep_->allocated_size; ++i) { allocated_bytes += TypeHandler::SpaceUsedLong(*cast(rep_->elements[i])); } allocated_bytes += kRepHeaderSize; } return allocated_bytes; } // Advanced memory management -------------------------------------- // Like Add(), but if there are no cleared objects to use, returns nullptr. template typename TypeHandler::Type* AddFromCleared() { if (rep_ != nullptr && current_size_ < rep_->allocated_size) { return cast(rep_->elements[current_size_++]); } else { return nullptr; } } template void AddAllocated(typename TypeHandler::Type* value) { typename TypeImplementsMergeBehavior::type t; AddAllocatedInternal(value, t); } template void UnsafeArenaAddAllocated(typename TypeHandler::Type* value) { // Make room for the new pointer. if (!rep_ || current_size_ == total_size_) { // The array is completely full with no cleared objects, so grow it. Reserve(total_size_ + 1); ++rep_->allocated_size; } else if (rep_->allocated_size == total_size_) { // There is no more space in the pointer array because it contains some // cleared objects awaiting reuse. We don't want to grow the array in // this case because otherwise a loop calling AddAllocated() followed by // Clear() would leak memory. TypeHandler::Delete(cast(rep_->elements[current_size_]), arena_); } else if (current_size_ < rep_->allocated_size) { // We have some cleared objects. We don't care about their order, so we // can just move the first one to the end to make space. rep_->elements[rep_->allocated_size] = rep_->elements[current_size_]; ++rep_->allocated_size; } else { // There are no cleared objects. ++rep_->allocated_size; } rep_->elements[current_size_++] = value; } template PROTOBUF_NODISCARD typename TypeHandler::Type* ReleaseLast() { typename TypeImplementsMergeBehavior::type t; return ReleaseLastInternal(t); } // Releases and returns the last element, but does not do out-of-arena copy. // Instead, just returns the raw pointer to the contained element in the // arena. template typename TypeHandler::Type* UnsafeArenaReleaseLast() { GOOGLE_DCHECK_GT(current_size_, 0); typename TypeHandler::Type* result = cast(rep_->elements[--current_size_]); --rep_->allocated_size; if (current_size_ < rep_->allocated_size) { // There are cleared elements on the end; replace the removed element // with the last allocated element. rep_->elements[current_size_] = rep_->elements[rep_->allocated_size]; } return result; } int ClearedCount() const { return rep_ ? (rep_->allocated_size - current_size_) : 0; } template void AddCleared(typename TypeHandler::Type* value) { GOOGLE_DCHECK(GetOwningArena() == nullptr) << "AddCleared() can only be used on a " "RepeatedPtrField not on an arena."; GOOGLE_DCHECK(TypeHandler::GetOwningArena(value) == nullptr) << "AddCleared() can only accept values not on an arena."; if (!rep_ || rep_->allocated_size == total_size_) { Reserve(total_size_ + 1); } rep_->elements[rep_->allocated_size++] = value; } template PROTOBUF_NODISCARD typename TypeHandler::Type* ReleaseCleared() { GOOGLE_DCHECK(GetOwningArena() == nullptr) << "ReleaseCleared() can only be used on a RepeatedPtrField not on " << "an arena."; GOOGLE_DCHECK(GetOwningArena() == nullptr); GOOGLE_DCHECK(rep_ != nullptr); GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_); return cast(rep_->elements[--rep_->allocated_size]); } template void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type) { // AddAllocated version that implements arena-safe copying behavior. Arena* element_arena = reinterpret_cast(TypeHandler::GetOwningArena(value)); Arena* arena = GetOwningArena(); if (arena == element_arena && rep_ && rep_->allocated_size < total_size_) { // Fast path: underlying arena representation (tagged pointer) is equal to // our arena pointer, and we can add to array without resizing it (at // least one slot that is not allocated). void** elems = rep_->elements; if (current_size_ < rep_->allocated_size) { // Make space at [current] by moving first allocated element to end of // allocated list. elems[rep_->allocated_size] = elems[current_size_]; } elems[current_size_] = value; current_size_ = current_size_ + 1; rep_->allocated_size = rep_->allocated_size + 1; } else { AddAllocatedSlowWithCopy(value, element_arena, arena); } } template void AddAllocatedInternal( // AddAllocated version that does not implement arena-safe copying // behavior. typename TypeHandler::Type* value, std::false_type) { if (rep_ && rep_->allocated_size < total_size_) { // Fast path: underlying arena representation (tagged pointer) is equal to // our arena pointer, and we can add to array without resizing it (at // least one slot that is not allocated). void** elems = rep_->elements; if (current_size_ < rep_->allocated_size) { // Make space at [current] by moving first allocated element to end of // allocated list. elems[rep_->allocated_size] = elems[current_size_]; } elems[current_size_] = value; current_size_ = current_size_ + 1; ++rep_->allocated_size; } else { UnsafeArenaAddAllocated(value); } } // Slowpath handles all cases, copying if necessary. template PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy( // Pass value_arena and my_arena to avoid duplicate virtual call (value) // or load (mine). typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) { // Ensure that either the value is in the same arena, or if not, we do the // appropriate thing: Own() it (if it's on heap and we're in an arena) or // copy it to our arena/heap (otherwise). if (my_arena != nullptr && value_arena == nullptr) { my_arena->Own(value); } else if (my_arena != value_arena) { typename TypeHandler::Type* new_value = TypeHandler::NewFromPrototype(value, my_arena); TypeHandler::Merge(*value, new_value); TypeHandler::Delete(value, value_arena); value = new_value; } UnsafeArenaAddAllocated(value); } template typename TypeHandler::Type* ReleaseLastInternal(std::true_type) { // ReleaseLast() for types that implement merge/copy behavior. // First, release an element. typename TypeHandler::Type* result = UnsafeArenaReleaseLast(); // Now perform a copy if we're on an arena. Arena* arena = GetOwningArena(); typename TypeHandler::Type* new_result; #ifdef PROTOBUF_FORCE_COPY_IN_RELEASE new_result = copy(result); if (arena == nullptr) delete result; #else // PROTOBUF_FORCE_COPY_IN_RELEASE new_result = (arena == nullptr) ? result : copy(result); #endif // !PROTOBUF_FORCE_COPY_IN_RELEASE return new_result; } template typename TypeHandler::Type* ReleaseLastInternal(std::false_type) { // ReleaseLast() for types that *do not* implement merge/copy behavior -- // this is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if // we're on an arena, since the user really should implement the copy // operation in this case. GOOGLE_DCHECK(GetOwningArena() == nullptr) << "ReleaseLast() called on a RepeatedPtrField that is on an arena, " << "with a type that does not implement MergeFrom. This is unsafe; " << "please implement MergeFrom for your type."; return UnsafeArenaReleaseLast(); } template PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other) { #ifdef PROTOBUF_FORCE_COPY_IN_SWAP GOOGLE_DCHECK(GetOwningArena() == nullptr || other->GetOwningArena() != GetOwningArena()); #else // PROTOBUF_FORCE_COPY_IN_SWAP GOOGLE_DCHECK(other->GetOwningArena() != GetOwningArena()); #endif // !PROTOBUF_FORCE_COPY_IN_SWAP // Copy semantics in this case. We try to improve efficiency by placing the // temporary on |other|'s arena so that messages are copied twice rather // than three times. RepeatedPtrFieldBase temp(other->GetOwningArena()); temp.MergeFrom(*this); this->Clear(); this->MergeFrom(*other); other->InternalSwap(&temp); temp.Destroy(); // Frees rep_ if `other` had no arena. } inline Arena* GetArena() const { return arena_; } protected: inline Arena* GetOwningArena() const { return arena_; } private: template friend class Arena::InternalHelper; static constexpr int kInitialSize = 0; // A few notes on internal representation: // // We use an indirected approach, with struct Rep, to keep // sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support // was added; namely, 3 8-byte machine words on x86-64. An instance of Rep is // allocated only when the repeated field is non-empty, and it is a // dynamically-sized struct (the header is directly followed by elements[]). // We place arena_ and current_size_ directly in the object to avoid cache // misses due to the indirection, because these fields are checked frequently. // Placing all fields directly in the RepeatedPtrFieldBase instance would cost // significant performance for memory-sensitive workloads. Arena* arena_; int current_size_; int total_size_; struct Rep { int allocated_size; // Here we declare a huge array as a way of approximating C's "flexible // array member" feature without relying on undefined behavior. void* elements[(std::numeric_limits::max() - 2 * sizeof(int)) / sizeof(void*)]; }; static constexpr size_t kRepHeaderSize = offsetof(Rep, elements); Rep* rep_; template static inline typename TypeHandler::Type* cast(void* element) { return reinterpret_cast(element); } template static inline const typename TypeHandler::Type* cast(const void* element) { return reinterpret_cast(element); } // Non-templated inner function to avoid code duplication. Takes a function // pointer to the type-specific (templated) inner allocate/merge loop. void MergeFromInternal(const RepeatedPtrFieldBase& other, void (RepeatedPtrFieldBase::*inner_loop)(void**, void**, int, int)) { // Note: wrapper has already guaranteed that other.rep_ != nullptr here. int other_size = other.current_size_; void** other_elements = other.rep_->elements; void** new_elements = InternalExtend(other_size); int allocated_elems = rep_->allocated_size - current_size_; (this->*inner_loop)(new_elements, other_elements, other_size, allocated_elems); current_size_ += other_size; if (rep_->allocated_size < current_size_) { rep_->allocated_size = current_size_; } } // Merges other_elems to our_elems. template PROTOBUF_NOINLINE void MergeFromInnerLoop(void** our_elems, void** other_elems, int length, int already_allocated) { if (already_allocated < length) { Arena* arena = GetOwningArena(); typename TypeHandler::Type* elem_prototype = reinterpret_cast(other_elems[0]); for (int i = already_allocated; i < length; i++) { // Allocate a new empty element that we'll merge into below typename TypeHandler::Type* new_elem = TypeHandler::NewFromPrototype(elem_prototype, arena); our_elems[i] = new_elem; } } // Main loop that does the actual merging for (int i = 0; i < length; i++) { // Already allocated: use existing element. typename TypeHandler::Type* other_elem = reinterpret_cast(other_elems[i]); typename TypeHandler::Type* new_elem = reinterpret_cast(our_elems[i]); TypeHandler::Merge(*other_elem, new_elem); } } // Internal helper: extends array space if necessary to contain // |extend_amount| more elements, and returns a pointer to the element // immediately following the old list of elements. This interface factors out // common behavior from Reserve() and MergeFrom() to reduce code size. // |extend_amount| must be > 0. void** InternalExtend(int extend_amount); // Internal helper for Add: adds "obj" as the next element in the // array, including potentially resizing the array with Reserve if // needed void* AddOutOfLineHelper(void* obj); // The reflection implementation needs to call protected methods directly, // reinterpreting pointers as being to Message instead of a specific Message // subclass. friend class ::PROTOBUF_NAMESPACE_ID::Reflection; friend class ::PROTOBUF_NAMESPACE_ID::internal::SwapFieldHelper; // ExtensionSet stores repeated message extensions as // RepeatedPtrField, but non-lite ExtensionSets need to implement // SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong() // reinterpreting MessageLite as Message. ExtensionSet also needs to make use // of AddFromCleared(), which is not part of the public interface. friend class ExtensionSet; // The MapFieldBase implementation needs to call protected methods directly, // reinterpreting pointers as being to Message instead of a specific Message // subclass. friend class MapFieldBase; friend class MapFieldBaseStub; // The table-driven MergePartialFromCodedStream implementation needs to // operate on RepeatedPtrField. friend class MergePartialFromCodedStreamHelper; friend class AccessorHelper; template friend struct google::protobuf::WeakRepeatedPtrField; friend class internal::TcParser; // TODO(jorg): Remove this friend. }; template class GenericTypeHandler { public: typedef GenericType Type; using Movable = IsMovable; static inline GenericType* New(Arena* arena) { return Arena::CreateMaybeMessage(arena); } static inline GenericType* New(Arena* arena, GenericType&& value) { return Arena::Create(arena, std::move(value)); } static inline GenericType* NewFromPrototype(const GenericType* /*prototype*/, Arena* arena = nullptr) { return New(arena); } static inline void Delete(GenericType* value, Arena* arena) { if (arena == nullptr) { delete value; } } static inline Arena* GetOwningArena(GenericType* value) { return Arena::GetOwningArena(value); } static inline void Clear(GenericType* value) { value->Clear(); } static void Merge(const GenericType& from, GenericType* to); static inline size_t SpaceUsedLong(const GenericType& value) { return value.SpaceUsedLong(); } }; // NewFromPrototypeHelper() is not defined inline here, as we will need to do a // virtual function dispatch anyways to go from Message* to call New/Merge. (The // additional helper is needed as a workaround for MSVC.) MessageLite* NewFromPrototypeHelper(const MessageLite* prototype, Arena* arena); template <> inline MessageLite* GenericTypeHandler::NewFromPrototype( const MessageLite* prototype, Arena* arena) { return NewFromPrototypeHelper(prototype, arena); } template <> inline Arena* GenericTypeHandler::GetOwningArena( MessageLite* value) { return value->GetOwningArena(); } template PROTOBUF_NOINLINE inline void GenericTypeHandler::Merge( const GenericType& from, GenericType* to) { to->MergeFrom(from); } template <> void GenericTypeHandler::Merge(const MessageLite& from, MessageLite* to); template <> inline void GenericTypeHandler::Clear(std::string* value) { value->clear(); } template <> void GenericTypeHandler::Merge(const std::string& from, std::string* to); // Message specialization bodies defined in message.cc. This split is necessary // to allow proto2-lite (which includes this header) to be independent of // Message. template <> PROTOBUF_EXPORT Message* GenericTypeHandler::NewFromPrototype( const Message* prototype, Arena* arena); template <> PROTOBUF_EXPORT Arena* GenericTypeHandler::GetOwningArena( Message* value); class StringTypeHandler { public: typedef std::string Type; using Movable = IsMovable; static inline std::string* New(Arena* arena) { return Arena::Create(arena); } static inline std::string* New(Arena* arena, std::string&& value) { return Arena::Create(arena, std::move(value)); } static inline std::string* NewFromPrototype(const std::string*, Arena* arena) { return New(arena); } static inline Arena* GetOwningArena(std::string*) { return nullptr; } static inline void Delete(std::string* value, Arena* arena) { if (arena == nullptr) { delete value; } } static inline void Clear(std::string* value) { value->clear(); } static inline void Merge(const std::string& from, std::string* to) { *to = from; } static size_t SpaceUsedLong(const std::string& value) { return sizeof(value) + StringSpaceUsedExcludingSelfLong(value); } }; } // namespace internal // RepeatedPtrField is like RepeatedField, but used for repeated strings or // Messages. template class RepeatedPtrField final : private internal::RepeatedPtrFieldBase { public: constexpr RepeatedPtrField(); explicit RepeatedPtrField(Arena* arena); RepeatedPtrField(const RepeatedPtrField& other); template ())>::value>::type> RepeatedPtrField(Iter begin, Iter end); ~RepeatedPtrField(); RepeatedPtrField& operator=(const RepeatedPtrField& other); RepeatedPtrField(RepeatedPtrField&& other) noexcept; RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept; bool empty() const; int size() const; const Element& Get(int index) const; Element* Mutable(int index); // Unlike std::vector, adding an element to a RepeatedPtrField doesn't always // make a new element; it might re-use an element left over from when the // field was Clear()'d or reize()'d smaller. For this reason, Add() is the // fastest API for adding a new element. Element* Add(); // `Add(std::move(value));` is equivalent to `*Add() = std::move(value);` // It will either move-construct to the end of this field, or swap value // with the new-or-recycled element at the end of this field. Note that // this operation is very slow if this RepeatedPtrField is not on the // same Arena, if any, as `value`. void Add(Element&& value); // Copying to the end of this RepeatedPtrField is slowest of all; it can't // reliably copy-construct to the last element of this RepeatedPtrField, for // example (unlike std::vector). // We currently block this API. The right way to add to the end is to call // Add() and modify the element it points to. // If you must add an existing value, call `*Add() = value;` void Add(const Element& value) = delete; // Append elements in the range [begin, end) after reserving // the appropriate number of elements. template void Add(Iter begin, Iter end); const Element& operator[](int index) const { return Get(index); } Element& operator[](int index) { return *Mutable(index); } const Element& at(int index) const; Element& at(int index); // Removes the last element in the array. // Ownership of the element is retained by the array. void RemoveLast(); // Deletes elements with indices in the range [start .. start+num-1]. // Caution: moves all elements with indices [start+num .. ]. // Calling this routine inside a loop can cause quadratic behavior. void DeleteSubrange(int start, int num); PROTOBUF_ATTRIBUTE_REINITIALIZES void Clear(); void MergeFrom(const RepeatedPtrField& other); PROTOBUF_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedPtrField& other); // Replaces the contents with RepeatedPtrField(begin, end). template PROTOBUF_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end); // Reserves space to expand the field to at least the given size. This only // resizes the pointer array; it doesn't allocate any objects. If the // array is grown, it will always be at least doubled in size. void Reserve(int new_size); int Capacity() const; // Gets the underlying array. This pointer is possibly invalidated by // any add or remove operation. // // This API is deprecated. Instead of directly working with element array, // use APIs in repeated_field_util.h; e.g. sorting, etc. PROTOBUF_DEPRECATED_MSG("Use APIs in repeated_field_util.h") Element** mutable_data(); const Element* const* data() const; // Swaps entire contents with "other". If they are on separate arenas, then // copies data. void Swap(RepeatedPtrField* other); // Swaps entire contents with "other". Caller should guarantee that either // both fields are on the same arena or both are on the heap. Swapping between // different arenas with this function is disallowed and is caught via // GOOGLE_DCHECK. void UnsafeArenaSwap(RepeatedPtrField* other); // Swaps two elements. void SwapElements(int index1, int index2); // STL-like iterator support typedef internal::RepeatedPtrIterator iterator; typedef internal::RepeatedPtrIterator const_iterator; typedef Element value_type; typedef value_type& reference; typedef const value_type& const_reference; typedef value_type* pointer; typedef const value_type* const_pointer; typedef int size_type; typedef ptrdiff_t difference_type; iterator begin(); const_iterator begin() const; const_iterator cbegin() const; iterator end(); const_iterator end() const; const_iterator cend() const; // Reverse iterator support typedef std::reverse_iterator const_reverse_iterator; typedef std::reverse_iterator reverse_iterator; reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // Custom STL-like iterator that iterates over and returns the underlying // pointers to Element rather than Element itself. typedef internal::RepeatedPtrOverPtrsIterator pointer_iterator; typedef internal::RepeatedPtrOverPtrsIterator const_pointer_iterator; pointer_iterator pointer_begin(); const_pointer_iterator pointer_begin() const; pointer_iterator pointer_end(); const_pointer_iterator pointer_end() const; // Returns (an estimate of) the number of bytes used by the repeated field, // excluding sizeof(*this). size_t SpaceUsedExcludingSelfLong() const; int SpaceUsedExcludingSelf() const { return internal::ToIntSize(SpaceUsedExcludingSelfLong()); } // Advanced memory management -------------------------------------- // When hardcore memory management becomes necessary -- as it sometimes // does here at Google -- the following methods may be useful. // Adds an already-allocated object, passing ownership to the // RepeatedPtrField. // // Note that some special behavior occurs with respect to arenas: // // (i) if this field holds submessages, the new submessage will be copied if // the original is in an arena and this RepeatedPtrField is either in a // different arena, or on the heap. // (ii) if this field holds strings, the passed-in string *must* be // heap-allocated, not arena-allocated. There is no way to dynamically check // this at runtime, so User Beware. void AddAllocated(Element* value); // Removes and returns the last element, passing ownership to the caller. // Requires: size() > 0 // // If this RepeatedPtrField is on an arena, an object copy is required to pass // ownership back to the user (for compatible semantics). Use // UnsafeArenaReleaseLast() if this behavior is undesired. PROTOBUF_NODISCARD Element* ReleaseLast(); // Adds an already-allocated object, skipping arena-ownership checks. The user // must guarantee that the given object is in the same arena as this // RepeatedPtrField. // It is also useful in legacy code that uses temporary ownership to avoid // copies. Example: // RepeatedPtrField temp_field; // temp_field.UnsafeArenaAddAllocated(new T); // ... // Do something with temp_field // temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr); // If you put temp_field on the arena this fails, because the ownership // transfers to the arena at the "AddAllocated" call and is not released // anymore, causing a double delete. UnsafeArenaAddAllocated prevents this. void UnsafeArenaAddAllocated(Element* value); // Removes and returns the last element. Unlike ReleaseLast, the returned // pointer is always to the original object. This may be in an arena, in // which case it would have the arena's lifetime. // Requires: current_size_ > 0 Element* UnsafeArenaReleaseLast(); // Extracts elements with indices in the range "[start .. start+num-1]". // The caller assumes ownership of the extracted elements and is responsible // for deleting them when they are no longer needed. // If "elements" is non-nullptr, then pointers to the extracted elements // are stored in "elements[0 .. num-1]" for the convenience of the caller. // If "elements" is nullptr, then the caller must use some other mechanism // to perform any further operations (like deletion) on these elements. // Caution: implementation also moves elements with indices [start+num ..]. // Calling this routine inside a loop can cause quadratic behavior. // // Memory copying behavior is identical to ReleaseLast(), described above: if // this RepeatedPtrField is on an arena, an object copy is performed for each // returned element, so that all returned element pointers are to // heap-allocated copies. If this copy is not desired, the user should call // UnsafeArenaExtractSubrange(). void ExtractSubrange(int start, int num, Element** elements); // Identical to ExtractSubrange() described above, except that no object // copies are ever performed. Instead, the raw object pointers are returned. // Thus, if on an arena, the returned objects must not be freed, because they // will not be heap-allocated objects. void UnsafeArenaExtractSubrange(int start, int num, Element** elements); // When elements are removed by calls to RemoveLast() or Clear(), they // are not actually freed. Instead, they are cleared and kept so that // they can be reused later. This can save lots of CPU time when // repeatedly reusing a protocol message for similar purposes. // // Hardcore programs may choose to manipulate these cleared objects // to better optimize memory management using the following routines. // Gets the number of cleared objects that are currently being kept // around for reuse. int ClearedCount() const; #ifndef PROTOBUF_FUTURE_BREAKING_CHANGES // Adds an element to the pool of cleared objects, passing ownership to // the RepeatedPtrField. The element must be cleared prior to calling // this method. // // This method cannot be called when either the repeated field or |value| is // on an arena; both cases will trigger a GOOGLE_DCHECK-failure. void AddCleared(Element* value); // Removes and returns a single element from the cleared pool, passing // ownership to the caller. The element is guaranteed to be cleared. // Requires: ClearedCount() > 0 // // This method cannot be called when the repeated field is on an arena; doing // so will trigger a GOOGLE_DCHECK-failure. PROTOBUF_NODISCARD Element* ReleaseCleared(); #endif // !PROTOBUF_FUTURE_BREAKING_CHANGES // Removes the element referenced by position. // // Returns an iterator to the element immediately following the removed // element. // // Invalidates all iterators at or after the removed element, including end(). iterator erase(const_iterator position); // Removes the elements in the range [first, last). // // Returns an iterator to the element immediately following the removed range. // // Invalidates all iterators at or after the removed range, including end(). iterator erase(const_iterator first, const_iterator last); // Gets the arena on which this RepeatedPtrField stores its elements. inline Arena* GetArena() const; // For internal use only. // // This is public due to it being called by generated code. void InternalSwap(RepeatedPtrField* other) { internal::RepeatedPtrFieldBase::InternalSwap(other); } private: // Note: RepeatedPtrField SHOULD NOT be subclassed by users. class TypeHandler; // Internal version of GetArena(). inline Arena* GetOwningArena() const; // Implementations for ExtractSubrange(). The copying behavior must be // included only if the type supports the necessary operations (e.g., // MergeFrom()), so we must resolve this at compile time. ExtractSubrange() // uses SFINAE to choose one of the below implementations. void ExtractSubrangeInternal(int start, int num, Element** elements, std::true_type); void ExtractSubrangeInternal(int start, int num, Element** elements, std::false_type); friend class Arena; template friend struct WeakRepeatedPtrField; typedef void InternalArenaConstructable_; }; // ------------------------------------------------------------------- template class RepeatedPtrField::TypeHandler : public internal::GenericTypeHandler {}; template <> class RepeatedPtrField::TypeHandler : public internal::StringTypeHandler {}; template constexpr RepeatedPtrField::RepeatedPtrField() : RepeatedPtrFieldBase() {} template inline RepeatedPtrField::RepeatedPtrField(Arena* arena) : RepeatedPtrFieldBase(arena) {} template inline RepeatedPtrField::RepeatedPtrField( const RepeatedPtrField& other) : RepeatedPtrFieldBase() { MergeFrom(other); } template template inline RepeatedPtrField::RepeatedPtrField(Iter begin, Iter end) { Add(begin, end); } template RepeatedPtrField::~RepeatedPtrField() { #ifdef __cpp_if_constexpr if constexpr (std::is_base_of::value) { #else if (std::is_base_of::value) { #endif if (NeedsDestroy()) DestroyProtos(); } else { Destroy(); } } template inline RepeatedPtrField& RepeatedPtrField::operator=( const RepeatedPtrField& other) { if (this != &other) CopyFrom(other); return *this; } template inline RepeatedPtrField::RepeatedPtrField( RepeatedPtrField&& other) noexcept : RepeatedPtrField() { #ifdef PROTOBUF_FORCE_COPY_IN_MOVE CopyFrom(other); #else // PROTOBUF_FORCE_COPY_IN_MOVE // We don't just call Swap(&other) here because it would perform 3 copies if // other is on an arena. This field can't be on an arena because arena // construction always uses the Arena* accepting constructor. if (other.GetOwningArena()) { CopyFrom(other); } else { InternalSwap(&other); } #endif // !PROTOBUF_FORCE_COPY_IN_MOVE } template inline RepeatedPtrField& RepeatedPtrField::operator=( RepeatedPtrField&& other) noexcept { // We don't just call Swap(&other) here because it would perform 3 copies if // the two fields are on different arenas. if (this != &other) { if (GetOwningArena() != other.GetOwningArena() #ifdef PROTOBUF_FORCE_COPY_IN_MOVE || GetOwningArena() == nullptr #endif // !PROTOBUF_FORCE_COPY_IN_MOVE ) { CopyFrom(other); } else { InternalSwap(&other); } } return *this; } template inline bool RepeatedPtrField::empty() const { return RepeatedPtrFieldBase::empty(); } template inline int RepeatedPtrField::size() const { return RepeatedPtrFieldBase::size(); } template inline const Element& RepeatedPtrField::Get(int index) const { return RepeatedPtrFieldBase::Get(index); } template inline const Element& RepeatedPtrField::at(int index) const { return RepeatedPtrFieldBase::at(index); } template inline Element& RepeatedPtrField::at(int index) { return RepeatedPtrFieldBase::at(index); } template inline Element* RepeatedPtrField::Mutable(int index) { return RepeatedPtrFieldBase::Mutable(index); } template inline Element* RepeatedPtrField::Add() { return RepeatedPtrFieldBase::Add(); } template inline void RepeatedPtrField::Add(Element&& value) { RepeatedPtrFieldBase::Add(std::move(value)); } template template inline void RepeatedPtrField::Add(Iter begin, Iter end) { if (std::is_base_of< std::forward_iterator_tag, typename std::iterator_traits::iterator_category>::value) { int reserve = std::distance(begin, end); Reserve(size() + reserve); } for (; begin != end; ++begin) { *Add() = *begin; } } template inline void RepeatedPtrField::RemoveLast() { RepeatedPtrFieldBase::RemoveLast(); } template inline void RepeatedPtrField::DeleteSubrange(int start, int num) { GOOGLE_DCHECK_GE(start, 0); GOOGLE_DCHECK_GE(num, 0); GOOGLE_DCHECK_LE(start + num, size()); for (int i = 0; i < num; ++i) { RepeatedPtrFieldBase::Delete(start + i); } UnsafeArenaExtractSubrange(start, num, nullptr); } template inline void RepeatedPtrField::ExtractSubrange(int start, int num, Element** elements) { typename internal::TypeImplementsMergeBehavior< typename TypeHandler::Type>::type t; ExtractSubrangeInternal(start, num, elements, t); } // ExtractSubrange() implementation for types that implement merge/copy // behavior. template inline void RepeatedPtrField::ExtractSubrangeInternal( int start, int num, Element** elements, std::true_type) { GOOGLE_DCHECK_GE(start, 0); GOOGLE_DCHECK_GE(num, 0); GOOGLE_DCHECK_LE(start + num, size()); if (num == 0) return; GOOGLE_DCHECK_NE(elements, nullptr) << "Releasing elements without transferring ownership is an unsafe " "operation. Use UnsafeArenaExtractSubrange."; if (elements == nullptr) { CloseGap(start, num); return; } Arena* arena = GetOwningArena(); #ifdef PROTOBUF_FORCE_COPY_IN_RELEASE // Always copy. for (int i = 0; i < num; ++i) { elements[i] = copy( RepeatedPtrFieldBase::Mutable(i + start)); } if (arena == nullptr) { for (int i = 0; i < num; ++i) { delete RepeatedPtrFieldBase::Mutable(i + start); } } #else // PROTOBUF_FORCE_COPY_IN_RELEASE // If we're on an arena, we perform a copy for each element so that the // returned elements are heap-allocated. Otherwise, just forward it. if (arena != nullptr) { for (int i = 0; i < num; ++i) { elements[i] = copy( RepeatedPtrFieldBase::Mutable(i + start)); } } else { for (int i = 0; i < num; ++i) { elements[i] = RepeatedPtrFieldBase::Mutable(i + start); } } #endif // !PROTOBUF_FORCE_COPY_IN_RELEASE CloseGap(start, num); } // ExtractSubrange() implementation for types that do not implement merge/copy // behavior. template inline void RepeatedPtrField::ExtractSubrangeInternal( int start, int num, Element** elements, std::false_type) { // This case is identical to UnsafeArenaExtractSubrange(). However, since // ExtractSubrange() must return heap-allocated objects by contract, and we // cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that // we are not on an arena. GOOGLE_DCHECK(GetOwningArena() == nullptr) << "ExtractSubrange() when arena is non-nullptr is only supported when " << "the Element type supplies a MergeFrom() operation to make copies."; UnsafeArenaExtractSubrange(start, num, elements); } template inline void RepeatedPtrField::UnsafeArenaExtractSubrange( int start, int num, Element** elements) { GOOGLE_DCHECK_GE(start, 0); GOOGLE_DCHECK_GE(num, 0); GOOGLE_DCHECK_LE(start + num, size()); if (num > 0) { // Save the values of the removed elements if requested. if (elements != nullptr) { for (int i = 0; i < num; ++i) { elements[i] = RepeatedPtrFieldBase::Mutable(i + start); } } CloseGap(start, num); } } template inline void RepeatedPtrField::Clear() { RepeatedPtrFieldBase::Clear(); } template inline void RepeatedPtrField::MergeFrom( const RepeatedPtrField& other) { RepeatedPtrFieldBase::MergeFrom(other); } template inline void RepeatedPtrField::CopyFrom(const RepeatedPtrField& other) { RepeatedPtrFieldBase::CopyFrom(other); } template template inline void RepeatedPtrField::Assign(Iter begin, Iter end) { Clear(); Add(begin, end); } template inline typename RepeatedPtrField::iterator RepeatedPtrField::erase(const_iterator position) { return erase(position, position + 1); } template inline typename RepeatedPtrField::iterator RepeatedPtrField::erase(const_iterator first, const_iterator last) { size_type pos_offset = std::distance(cbegin(), first); size_type last_offset = std::distance(cbegin(), last); DeleteSubrange(pos_offset, last_offset - pos_offset); return begin() + pos_offset; } template inline Element** RepeatedPtrField::mutable_data() { return RepeatedPtrFieldBase::mutable_data(); } template inline const Element* const* RepeatedPtrField::data() const { return RepeatedPtrFieldBase::data(); } template inline void RepeatedPtrField::Swap(RepeatedPtrField* other) { if (this == other) return; RepeatedPtrFieldBase::Swap(other); } template inline void RepeatedPtrField::UnsafeArenaSwap( RepeatedPtrField* other) { if (this == other) return; GOOGLE_DCHECK_EQ(GetOwningArena(), other->GetOwningArena()); RepeatedPtrFieldBase::InternalSwap(other); } template inline void RepeatedPtrField::SwapElements(int index1, int index2) { RepeatedPtrFieldBase::SwapElements(index1, index2); } template inline Arena* RepeatedPtrField::GetArena() const { return RepeatedPtrFieldBase::GetArena(); } template inline Arena* RepeatedPtrField::GetOwningArena() const { return RepeatedPtrFieldBase::GetOwningArena(); } template inline size_t RepeatedPtrField::SpaceUsedExcludingSelfLong() const { return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong(); } template inline void RepeatedPtrField::AddAllocated(Element* value) { RepeatedPtrFieldBase::AddAllocated(value); } template inline void RepeatedPtrField::UnsafeArenaAddAllocated(Element* value) { RepeatedPtrFieldBase::UnsafeArenaAddAllocated(value); } template inline Element* RepeatedPtrField::ReleaseLast() { return RepeatedPtrFieldBase::ReleaseLast(); } template inline Element* RepeatedPtrField::UnsafeArenaReleaseLast() { return RepeatedPtrFieldBase::UnsafeArenaReleaseLast(); } template inline int RepeatedPtrField::ClearedCount() const { return RepeatedPtrFieldBase::ClearedCount(); } #ifndef PROTOBUF_FUTURE_BREAKING_CHANGES template inline void RepeatedPtrField::AddCleared(Element* value) { return RepeatedPtrFieldBase::AddCleared(value); } template inline Element* RepeatedPtrField::ReleaseCleared() { return RepeatedPtrFieldBase::ReleaseCleared(); } #endif // !PROTOBUF_FUTURE_BREAKING_CHANGES template inline void RepeatedPtrField::Reserve(int new_size) { return RepeatedPtrFieldBase::Reserve(new_size); } template inline int RepeatedPtrField::Capacity() const { return RepeatedPtrFieldBase::Capacity(); } // ------------------------------------------------------------------- namespace internal { // STL-like iterator implementation for RepeatedPtrField. You should not // refer to this class directly; use RepeatedPtrField::iterator instead. // // The iterator for RepeatedPtrField, RepeatedPtrIterator, is // very similar to iterator_ptr in util/gtl/iterator_adaptors.h, // but adds random-access operators and is modified to wrap a void** base // iterator (since RepeatedPtrField stores its array as a void* array and // casting void** to T** would violate C++ aliasing rules). // // This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin // (jyasskin@google.com). template class RepeatedPtrIterator { public: using iterator = RepeatedPtrIterator; using iterator_category = std::random_access_iterator_tag; using value_type = typename std::remove_const::type; using difference_type = std::ptrdiff_t; using pointer = Element*; using reference = Element&; RepeatedPtrIterator() : it_(nullptr) {} explicit RepeatedPtrIterator(void* const* it) : it_(it) {} // Allows "upcasting" from RepeatedPtrIterator to // RepeatedPtrIterator. template ::value>::type* = nullptr> RepeatedPtrIterator(const RepeatedPtrIterator& other) : it_(other.it_) {} // dereferenceable reference operator*() const { return *reinterpret_cast(*it_); } pointer operator->() const { return &(operator*()); } // {inc,dec}rementable iterator& operator++() { ++it_; return *this; } iterator operator++(int) { return iterator(it_++); } iterator& operator--() { --it_; return *this; } iterator operator--(int) { return iterator(it_--); } // equality_comparable friend bool operator==(const iterator& x, const iterator& y) { return x.it_ == y.it_; } friend bool operator!=(const iterator& x, const iterator& y) { return x.it_ != y.it_; } // less_than_comparable friend bool operator<(const iterator& x, const iterator& y) { return x.it_ < y.it_; } friend bool operator<=(const iterator& x, const iterator& y) { return x.it_ <= y.it_; } friend bool operator>(const iterator& x, const iterator& y) { return x.it_ > y.it_; } friend bool operator>=(const iterator& x, const iterator& y) { return x.it_ >= y.it_; } // addable, subtractable iterator& operator+=(difference_type d) { it_ += d; return *this; } friend iterator operator+(iterator it, const difference_type d) { it += d; return it; } friend iterator operator+(const difference_type d, iterator it) { it += d; return it; } iterator& operator-=(difference_type d) { it_ -= d; return *this; } friend iterator operator-(iterator it, difference_type d) { it -= d; return it; } // indexable reference operator[](difference_type d) const { return *(*this + d); } // random access iterator friend difference_type operator-(iterator it1, iterator it2) { return it1.it_ - it2.it_; } private: template friend class RepeatedPtrIterator; // The internal iterator. void* const* it_; }; // Provides an iterator that operates on pointers to the underlying objects // rather than the objects themselves as RepeatedPtrIterator does. // Consider using this when working with stl algorithms that change // the array. // The VoidPtr template parameter holds the type-agnostic pointer value // referenced by the iterator. It should either be "void *" for a mutable // iterator, or "const void* const" for a constant iterator. template class RepeatedPtrOverPtrsIterator { public: using iterator = RepeatedPtrOverPtrsIterator; using iterator_category = std::random_access_iterator_tag; using value_type = typename std::remove_const::type; using difference_type = std::ptrdiff_t; using pointer = Element*; using reference = Element&; RepeatedPtrOverPtrsIterator() : it_(nullptr) {} explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {} // Allows "upcasting" from RepeatedPtrOverPtrsIterator to // RepeatedPtrOverPtrsIterator. template < typename OtherElement, typename OtherVoidPtr, typename std::enable_if< std::is_convertible::value && std::is_convertible::value>::type* = nullptr> RepeatedPtrOverPtrsIterator( const RepeatedPtrOverPtrsIterator& other) : it_(other.it_) {} // dereferenceable reference operator*() const { return *reinterpret_cast(it_); } pointer operator->() const { return &(operator*()); } // {inc,dec}rementable iterator& operator++() { ++it_; return *this; } iterator operator++(int) { return iterator(it_++); } iterator& operator--() { --it_; return *this; } iterator operator--(int) { return iterator(it_--); } // equality_comparable friend bool operator==(const iterator& x, const iterator& y) { return x.it_ == y.it_; } friend bool operator!=(const iterator& x, const iterator& y) { return x.it_ != y.it_; } // less_than_comparable friend bool operator<(const iterator& x, const iterator& y) { return x.it_ < y.it_; } friend bool operator<=(const iterator& x, const iterator& y) { return x.it_ <= y.it_; } friend bool operator>(const iterator& x, const iterator& y) { return x.it_ > y.it_; } friend bool operator>=(const iterator& x, const iterator& y) { return x.it_ >= y.it_; } // addable, subtractable iterator& operator+=(difference_type d) { it_ += d; return *this; } friend iterator operator+(iterator it, difference_type d) { it += d; return it; } friend iterator operator+(difference_type d, iterator it) { it += d; return it; } iterator& operator-=(difference_type d) { it_ -= d; return *this; } friend iterator operator-(iterator it, difference_type d) { it -= d; return it; } // indexable reference operator[](difference_type d) const { return *(*this + d); } // random access iterator friend difference_type operator-(iterator it1, iterator it2) { return it1.it_ - it2.it_; } private: template friend class RepeatedPtrOverPtrsIterator; // The internal iterator. VoidPtr* it_; }; } // namespace internal template inline typename RepeatedPtrField::iterator RepeatedPtrField::begin() { return iterator(raw_data()); } template inline typename RepeatedPtrField::const_iterator RepeatedPtrField::begin() const { return iterator(raw_data()); } template inline typename RepeatedPtrField::const_iterator RepeatedPtrField::cbegin() const { return begin(); } template inline typename RepeatedPtrField::iterator RepeatedPtrField::end() { return iterator(raw_data() + size()); } template inline typename RepeatedPtrField::const_iterator RepeatedPtrField::end() const { return iterator(raw_data() + size()); } template inline typename RepeatedPtrField::const_iterator RepeatedPtrField::cend() const { return end(); } template inline typename RepeatedPtrField::pointer_iterator RepeatedPtrField::pointer_begin() { return pointer_iterator(raw_mutable_data()); } template inline typename RepeatedPtrField::const_pointer_iterator RepeatedPtrField::pointer_begin() const { return const_pointer_iterator(const_cast(raw_data())); } template inline typename RepeatedPtrField::pointer_iterator RepeatedPtrField::pointer_end() { return pointer_iterator(raw_mutable_data() + size()); } template inline typename RepeatedPtrField::const_pointer_iterator RepeatedPtrField::pointer_end() const { return const_pointer_iterator( const_cast(raw_data() + size())); } // Iterators and helper functions that follow the spirit of the STL // std::back_insert_iterator and std::back_inserter but are tailor-made // for RepeatedField and RepeatedPtrField. Typical usage would be: // // std::copy(some_sequence.begin(), some_sequence.end(), // RepeatedFieldBackInserter(proto.mutable_sequence())); // // Ported by johannes from util/gtl/proto-array-iterators.h namespace internal { // A back inserter for RepeatedPtrField objects. template class RepeatedPtrFieldBackInsertIterator { public: using iterator_category = std::output_iterator_tag; using value_type = T; using pointer = void; using reference = void; using difference_type = std::ptrdiff_t; RepeatedPtrFieldBackInsertIterator(RepeatedPtrField* const mutable_field) : field_(mutable_field) {} RepeatedPtrFieldBackInsertIterator& operator=(const T& value) { *field_->Add() = value; return *this; } RepeatedPtrFieldBackInsertIterator& operator=( const T* const ptr_to_value) { *field_->Add() = *ptr_to_value; return *this; } RepeatedPtrFieldBackInsertIterator& operator=(T&& value) { *field_->Add() = std::move(value); return *this; } RepeatedPtrFieldBackInsertIterator& operator*() { return *this; } RepeatedPtrFieldBackInsertIterator& operator++() { return *this; } RepeatedPtrFieldBackInsertIterator& operator++(int /* unused */) { return *this; } private: RepeatedPtrField* field_; }; // A back inserter for RepeatedPtrFields that inserts by transferring ownership // of a pointer. template class AllocatedRepeatedPtrFieldBackInsertIterator { public: using iterator_category = std::output_iterator_tag; using value_type = T; using pointer = void; using reference = void; using difference_type = std::ptrdiff_t; explicit AllocatedRepeatedPtrFieldBackInsertIterator( RepeatedPtrField* const mutable_field) : field_(mutable_field) {} AllocatedRepeatedPtrFieldBackInsertIterator& operator=( T* const ptr_to_value) { field_->AddAllocated(ptr_to_value); return *this; } AllocatedRepeatedPtrFieldBackInsertIterator& operator*() { return *this; } AllocatedRepeatedPtrFieldBackInsertIterator& operator++() { return *this; } AllocatedRepeatedPtrFieldBackInsertIterator& operator++(int /* unused */) { return *this; } private: RepeatedPtrField* field_; }; // Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one // uses the UnsafeArenaAddAllocated instead. template class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator { public: using iterator_category = std::output_iterator_tag; using value_type = T; using pointer = void; using reference = void; using difference_type = std::ptrdiff_t; explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator( RepeatedPtrField* const mutable_field) : field_(mutable_field) {} UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator& operator=( T const* const ptr_to_value) { field_->UnsafeArenaAddAllocated(const_cast(ptr_to_value)); return *this; } UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator& operator*() { return *this; } UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator& operator++() { return *this; } UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator& operator++( int /* unused */) { return *this; } private: RepeatedPtrField* field_; }; } // namespace internal // Provides a back insert iterator for RepeatedPtrField instances, // similar to std::back_inserter(). template internal::RepeatedPtrFieldBackInsertIterator RepeatedPtrFieldBackInserter( RepeatedPtrField* const mutable_field) { return internal::RepeatedPtrFieldBackInsertIterator(mutable_field); } // Special back insert iterator for RepeatedPtrField instances, just in // case someone wants to write generic template code that can access both // RepeatedFields and RepeatedPtrFields using a common name. template internal::RepeatedPtrFieldBackInsertIterator RepeatedFieldBackInserter( RepeatedPtrField* const mutable_field) { return internal::RepeatedPtrFieldBackInsertIterator(mutable_field); } // Provides a back insert iterator for RepeatedPtrField instances // similar to std::back_inserter() which transfers the ownership while // copying elements. template internal::AllocatedRepeatedPtrFieldBackInsertIterator AllocatedRepeatedPtrFieldBackInserter( RepeatedPtrField* const mutable_field) { return internal::AllocatedRepeatedPtrFieldBackInsertIterator( mutable_field); } // Similar to AllocatedRepeatedPtrFieldBackInserter, using // UnsafeArenaAddAllocated instead of AddAllocated. // This is slightly faster if that matters. It is also useful in legacy code // that uses temporary ownership to avoid copies. Example: // RepeatedPtrField temp_field; // temp_field.UnsafeArenaAddAllocated(new T); // ... // Do something with temp_field // temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr); // Putting temp_field on the arena fails because the ownership transfers to the // arena at the "AddAllocated" call and is not released anymore causing a // double delete. This function uses UnsafeArenaAddAllocated to prevent this. template internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator UnsafeArenaAllocatedRepeatedPtrFieldBackInserter( RepeatedPtrField* const mutable_field) { return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator( mutable_field); } extern template class PROTOBUF_EXPORT_TEMPLATE_DECLARE RepeatedPtrField; } // namespace protobuf } // namespace google #include #endif // GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__