# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Part of the Keras training engine related to plain array data.""" # pylint: disable=protected-access import functools import numpy as np from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.eager import context from tensorflow.python.framework import errors from tensorflow.python.keras import backend from tensorflow.python.keras import callbacks as cbks from tensorflow.python.keras.distribute import distributed_training_utils_v1 from tensorflow.python.keras.engine import training_utils_v1 from tensorflow.python.keras.utils.generic_utils import make_batches from tensorflow.python.keras.utils.generic_utils import slice_arrays from tensorflow.python.keras.utils.mode_keys import ModeKeys from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest try: from scipy.sparse import issparse # pylint: disable=g-import-not-at-top except ImportError: issparse = None def model_iteration(model, inputs, targets=None, sample_weights=None, batch_size=None, epochs=1, verbose=1, callbacks=None, val_inputs=None, val_targets=None, val_sample_weights=None, shuffle=True, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, mode=ModeKeys.TRAIN, validation_in_fit=False, prepared_feed_values_from_dataset=False, steps_name='steps', **kwargs): """Loop function for arrays of data with modes TRAIN/TEST/PREDICT. Args: model: Keras Model instance. inputs: Either a list or dictionary of arrays, or a dataset instance. targets: List/dictionary of input arrays. sample_weights: Optional list of sample weight arrays. batch_size: Integer batch size or None if unknown. epochs: Number of times to iterate over the data verbose: 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. Note that the progress bar is not particularly useful when logged to a file, so verbose=2 is recommended when not running interactively (eg, in a production environment). callbacks: List of callbacks to be called during training val_inputs: Either a list or dictionary of arrays, or a dataset instance. val_targets: List/dictionary of target arrays. val_sample_weights: Optional list of sample weight arrays. shuffle: Whether to shuffle the data at the beginning of each epoch concatenation of list the display names of the outputs of `f` and the list of display names of the outputs of `f_val`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with the default value of `None`. validation_freq: Only relevant if validation data is provided. Integer or `collections.abc.Container` instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. `validation_freq=2` runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the end of the 1st, 2nd, and 10th epochs. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. validation_in_fit: if true, then this method is invoked from within training iteration (for validation). In the case where `val_inputs` is a dataset, this flag indicates that its iterator and feed values are already created so should properly reuse resources. prepared_feed_values_from_dataset: if True, `inputs` is a list of feed tensors returned from `_prepare_feed_values` call on the validation dataset, so do not call it again on `inputs`. Should only be used for inline validation (i.e., only if `validation_in_fit` is also True). steps_name: The string name of the steps argument, either `steps`, `validation_steps`, or `steps_per_epoch`. Only used for error message formatting. **kwargs: Additional arguments for backwards compatibility. Returns: - In TRAIN mode: `History` object. - In TEST mode: Evaluation metrics. - In PREDICT mode: Outputs of the Model called on inputs. Raises: ValueError: in case of invalid arguments. """ # Backwards compatibility. if 'steps' in kwargs: steps_per_epoch = kwargs.pop('steps') if kwargs: raise TypeError('Unknown arguments: %s' % (kwargs,)) # In case we were passed a dataset, we extract symbolic tensors from it. reset_dataset_after_each_epoch = False input_iterator = None is_dataset = isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)) # TODO(fchollet): consider moving `steps_per_epoch` inference to # _standardize_user_data and set reset_dataset_after_each_epoch as an # attribute on the dataset instance. if is_dataset: if steps_per_epoch is None: reset_dataset_after_each_epoch = True steps_per_epoch = training_utils_v1.infer_steps_for_dataset( model, inputs, steps_per_epoch, epochs=epochs, steps_name=steps_name) input_iterator = _get_iterator(inputs, model._distribution_strategy) # Enter tf.distribute.Strategy scope. if model._distribution_strategy: scope = distributed_training_utils_v1.distributed_scope( strategy=model._distribution_strategy, learning_phase=(1 if mode == ModeKeys.TRAIN else 0)) scope.__enter__() use_steps = is_dataset or steps_per_epoch is not None do_validation = val_inputs is not None # Prepare input data. inputs = input_iterator or inputs if validation_in_fit and prepared_feed_values_from_dataset: # When invoking validation in training loop, avoid creating iterator and # list of feed values for the same validation dataset multiple times (which # essentially would call `iterator.get_next()` that slows down execution and # leads to OOM errors eventually. ins = inputs else: ins = _prepare_feed_values(model, inputs, targets, sample_weights, mode) # `ins` is a function when a distribute strategy is used in Eager mode. In # that case `is_dataset` is True. The code branches that have requirements # about the type of `ins` do not trigger in the distributed case. if not is_dataset: num_samples_or_steps = _get_num_samples_or_steps(ins, batch_size, steps_per_epoch) else: num_samples_or_steps = steps_per_epoch # Update sample_weight_mode of the model if sample_weights is specified by the # user. We need to call this function after we have a handle on the inputs # (both numpy arrays and datasets) in order to determine if the user has # specified sample_weights. _update_sample_weight_mode(model, mode, ins) # Get step function and loop type. As part of building the execution # function we recompile the metrics based on the updated # sample_weight_mode value. f = _make_execution_function(model, mode) # Prepare validation data. Hold references to the iterator and the input list # to properly reinitialize and reuse in multiple validation passes. val_iterator = None if isinstance(val_inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)): if validation_steps is None: # Because we pass an iterator feed instead of a Dataset to the eval # model_iteration() call, it will not trigger the dataset-input path # that determines the number of steps required. To avoid this issue, # set validation_steps here if validation_steps is None. validation_steps = training_utils_v1.infer_steps_for_dataset( model, val_inputs, validation_steps, epochs=epochs, steps_name='validation_steps') val_iterator = _get_iterator(val_inputs, model._distribution_strategy) val_inputs = _prepare_feed_values( model, val_iterator, val_targets, val_sample_weights, ModeKeys.TEST) # Get num steps for printing. val_samples_or_steps = validation_steps else: # Get num samples for printing. val_samples_or_steps = val_inputs and nest.flatten( val_inputs)[0].shape[0] or None if mode == ModeKeys.TRAIN and verbose: _print_train_info(num_samples_or_steps, val_samples_or_steps, is_dataset) # Configure callbacks. count_mode = 'steps' if use_steps else 'samples' callbacks = cbks.configure_callbacks( callbacks, model, do_validation=do_validation, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, samples=num_samples_or_steps, count_mode=count_mode, verbose=verbose, mode=mode) # Find beforehand arrays that need sparse-to-dense conversion. if issparse is not None and not use_steps: indices_for_conversion_to_dense = [] feed = _get_model_feed(model, mode) for i, (input_data, feed_tensor) in enumerate(zip(ins, feed)): if issparse(input_data) and not backend.is_sparse(feed_tensor): indices_for_conversion_to_dense.append(i) # Select aggregation method. if mode == ModeKeys.PREDICT: aggregator = training_utils_v1.OutputsAggregator( use_steps, num_samples=None if steps_per_epoch else num_samples_or_steps, steps=steps_per_epoch) else: aggregator = training_utils_v1.MetricsAggregator( use_steps, num_samples=None if steps_per_epoch else num_samples_or_steps, steps=steps_per_epoch) if model._compile_distribution: distributed_training_utils_v1._copy_weights_to_distributed_model( model, mode) callbacks.model.stop_training = False callbacks._call_begin_hook(mode) initial_epoch = model._maybe_load_initial_epoch_from_ckpt(initial_epoch, mode) for epoch in range(initial_epoch, epochs): if callbacks.model.stop_training: break # Setup work for each epoch epoch_logs = {} if mode != ModeKeys.PREDICT: # Collecting and resetting metrics has non-zero cost and will needlessly # slow down model.predict. model.reset_metrics() if mode == ModeKeys.TRAIN: callbacks.on_epoch_begin(epoch, epoch_logs) if use_steps: # Step-wise loop. if steps_per_epoch is None: # Loop over dataset until `OutOfRangeError` is raised. target_steps = np.inf else: # Loop over dataset for the specified number of steps. target_steps = steps_per_epoch step = 0 while step < target_steps: batch_logs = {'batch': step, 'size': 1} callbacks._call_batch_hook(mode, 'begin', step, batch_logs) # Get outputs. try: # `ins` can be callable in tf.distribute.Strategy + eager case. if not callable(ins) or (model._distribution_strategy and not distributed_training_utils_v1 .is_distributing_by_cloning(model)): actual_inputs = ins else: actual_inputs = ins() batch_outs = f(actual_inputs) except errors.OutOfRangeError: if is_dataset: # The dataset passed by the user ran out of batches. # Now we know the cardinality of the dataset. # If steps_per_epoch was specified, then running out of data is # unexpected, so we stop training and inform the user. if steps_per_epoch: callbacks.model.stop_training = True logging.warning( 'Your dataset ran out of data; interrupting training. ' 'Make sure that your dataset can generate at least ' '`%s * epochs` batches (in this case, %d batches). ' 'You may need to use the repeat() function when ' 'building your dataset.' % (steps_name, steps_per_epoch * epochs)) elif step > 0: steps_per_epoch = step aggregator.steps = steps_per_epoch else: # We ran out of batches while the user passed an iterator (legacy). callbacks.model.stop_training = True logging.warning( 'Your dataset iterator ran out of data; ' 'interrupting training. Make sure that your iterator ' 'can generate at least `%s * epochs` ' 'batches (in this case, %d batches). You may need to' 'use the repeat() function when building your ' 'dataset.' % (steps_name, steps_per_epoch * epochs)) break if not isinstance(batch_outs, list): batch_outs = [batch_outs] if model._distribution_strategy: batch_outs = ( distributed_training_utils_v1._per_replica_aggregate_batch( model._distribution_strategy, batch_outs, model, mode)) # Aggregate results. if step == 0: aggregator.create(batch_outs) aggregator.aggregate(batch_outs) # Callbacks batch end. batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', step, batch_logs) step += 1 if callbacks.model.stop_training: break else: # Sample-wise loop. index_array = np.arange(num_samples_or_steps) if shuffle == 'batch': index_array = training_utils_v1.batch_shuffle(index_array, batch_size) elif shuffle: np.random.shuffle(index_array) batches = make_batches(num_samples_or_steps, batch_size) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] # Slice into a batch. if len(batches) == 1: # If we only have one batch, do not slice. This takes care of # composite tensors in non-Dataset modes; we currently don't support # slicing them. # TODO(b/133517906): Add slicing support. ins_batch = ins else: try: if ins and isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) except TypeError: raise TypeError('TypeError while preparing batch. ' 'If using HDF5 input data, ' 'pass shuffle="batch".') # Sparse to dense conversion. if issparse is not None: for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() # Callbacks batch_begin. batch_logs = {'batch': batch_index, 'size': len(batch_ids)} callbacks._call_batch_hook(mode, 'begin', batch_index, batch_logs) # Get outputs. batch_outs = f(ins_batch) if not isinstance(batch_outs, list): batch_outs = [batch_outs] # Aggregate results. if batch_index == 0: aggregator.create(batch_outs) aggregator.aggregate(batch_outs, batch_start, batch_end) # Callbacks batch end. batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs) if callbacks.model.stop_training: break aggregator.finalize() results = aggregator.results epoch_logs = cbks.make_logs(model, epoch_logs, results, mode) if len(results) == 1: results = results[0] # Run the test loop every `validation_freq` epochs during training. if (do_validation and training_utils_v1.should_run_validation(validation_freq, epoch) and not callbacks.model.stop_training): if model._compile_distribution: # Since we create a new clone from the original model we need to copy # the weights back to the original model before we can run validation. distributed_training_utils_v1._copy_weights_to_original_model( model, ModeKeys.TRAIN) val_results = model_iteration( model, val_inputs, targets=val_targets, sample_weights=val_sample_weights, batch_size=batch_size, steps_per_epoch=validation_steps, callbacks=callbacks, verbose=0, mode=ModeKeys.TEST, validation_in_fit=True, prepared_feed_values_from_dataset=(val_iterator is not None), steps_name='validation_steps') if not isinstance(val_results, list): val_results = [val_results] epoch_logs = cbks.make_logs( model, epoch_logs, val_results, mode, prefix='val_') if val_iterator and epoch < epochs - 1: _reinitialize_iterator(val_iterator, model._distribution_strategy) if mode == ModeKeys.TRAIN: # Epochs only apply to `fit`. callbacks.on_epoch_end(epoch, epoch_logs) # Reinitialize dataset iterator for the next epoch. if reset_dataset_after_each_epoch and epoch < epochs - 1: _reinitialize_iterator(input_iterator, model._distribution_strategy) model._successful_loop_finish = True callbacks._call_end_hook(mode) if model._distribution_strategy: if model._compile_distribution: # TODO(priyag, psv): Copy back metrics to the original model as well? distributed_training_utils_v1._copy_weights_to_original_model(model, mode) scope.__exit__(None, None, None) if mode == ModeKeys.TRAIN: return model.history return results def _get_model_feed(model, mode): if mode == ModeKeys.PREDICT: feed = model._feed_inputs else: feed = ( model._feed_inputs + model._feed_targets + model._feed_sample_weights) return feed def _print_train_info(num_samples_or_steps, val_samples_or_steps, is_dataset): increment = 'steps' if is_dataset else 'samples' msg = 'Train on {0} {increment}'.format( num_samples_or_steps, increment=increment) if val_samples_or_steps: msg += ', validate on {0} {increment}'.format( val_samples_or_steps, increment=increment) print(msg) def _get_num_samples_or_steps(ins, batch_size, steps_per_epoch): """Returns total number of samples (when training in batch mode) or steps.""" if steps_per_epoch: return steps_per_epoch return training_utils_v1.check_num_samples(ins, batch_size, steps_per_epoch, 'steps_per_epoch') def _prepare_feed_values(model, inputs, targets, sample_weights, mode): """Prepare feed values to the model execution function. Args: model: Model to prepare feed values for. inputs: List or dict of model inputs. targets: Optional list of model targets. sample_weights: Optional list of sample weight arrays. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. Returns: Feed values for the model in the given mode. """ if model._distribution_strategy: if isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)): inputs = distributed_training_utils_v1.get_iterator( inputs, model._distribution_strategy) def get_distributed_inputs(): return distributed_training_utils_v1._prepare_feed_values( model, inputs, targets, sample_weights, mode) # In the eager case, we want to call the input method per step, so return # a lambda from here that can be called. Note that this is applicable only # in Distribution Strategy case as it follows the same code path for both # eager and graph modes. # TODO(priyag,omalleyt): Either we should move the training DS with # IteratorBase to use training_generator code path, or figure out how to # set a symbolic Iterator out of a Dataset when in eager mode. if context.executing_eagerly(): return get_distributed_inputs else: return get_distributed_inputs() if isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2, iterator_ops.Iterator)): inputs, targets, sample_weights = model._standardize_user_data( inputs, extract_tensors_from_dataset=True) inputs = training_utils_v1.ModelInputs(inputs).as_list() targets = list(targets or []) sample_weights = list(sample_weights or []) ins = inputs + targets + sample_weights if mode == ModeKeys.TRAIN and not isinstance( backend.symbolic_learning_phase(), int): ins += [True] # Add learning phase value. return ins def _get_iterator(inputs, distribution_strategy=None): if distribution_strategy: return distributed_training_utils_v1.get_iterator( inputs, distribution_strategy) return training_utils_v1.get_iterator(inputs) def _reinitialize_iterator(iterator, distribution_strategy=None): if distribution_strategy: distributed_training_utils_v1.initialize_iterator( iterator, distribution_strategy) else: training_utils_v1.initialize_iterator(iterator) def _make_execution_function(model, mode): """Makes function to run one step of model execution.""" if model._distribution_strategy: return distributed_training_utils_v1._make_execution_function(model, mode) return model._make_execution_function(mode) def _update_sample_weight_mode(model, mode, inputs): """Updates the sample_weight_mode of a given model.""" # Add a quick return to prevent us from calling model._feed_targets that # accesses certain model properties that may not be set in the `PREDICT` mode. if mode == ModeKeys.PREDICT: return sample_weights = None # `inputs` is the model's inputs + targets + sample_weights + # learning phase placeholder if specified. To update the sample_weight_mode # we need to determine if the user has passed sample weights as part of the # input. if not callable(inputs): sample_weights = inputs[len(model._feed_inputs) + len(model._feed_targets):] has_learning_phase_pl = (mode == ModeKeys.TRAIN and not isinstance(backend.symbolic_learning_phase(), int)) if has_learning_phase_pl: sample_weights = sample_weights[:-1] model._update_sample_weight_modes(sample_weights=sample_weights) # Call the DistributionStrategy specific function to update the # sample_weight_mode on the model. if model._distribution_strategy: distributed_training_utils_v1._update_sample_weight_modes(model, mode, sample_weights) # For backwards compatibility for internal users of these loops. fit_loop = functools.partial(model_iteration, mode=ModeKeys.TRAIN) test_loop = functools.partial( model_iteration, mode=ModeKeys.TEST, shuffle=False) predict_loop = functools.partial( model_iteration, mode=ModeKeys.PREDICT, shuffle=False) class ArrayLikeTrainingLoop(training_utils_v1.TrainingLoop): """TrainingLoop that handle inputs like array. This is the default handler for most of the input data types, includes symbolic tensors or Numpy array-like, Datasets and iterators in graph mode (since they generate symbolic tensors). This Function is used to handle model with `run_eagerly` = False. """ def fit(self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, **kwargs): batch_size = model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x) x, y, sample_weights = model._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, check_steps=True, steps_name='steps_per_epoch', steps=steps_per_epoch, validation_split=validation_split, shuffle=shuffle) if validation_data: val_x, val_y, val_sample_weights = model._prepare_validation_data( validation_data, batch_size, validation_steps) elif validation_split and 0. < validation_split < 1.: (x, y, sample_weights, val_x, val_y, val_sample_weights ) = training_utils_v1.split_training_and_validation_data( x, y, sample_weights, validation_split) else: if validation_steps: raise ValueError('`validation_steps` should not be specified if ' '`validation_data` is None.') val_x, val_y, val_sample_weights = None, None, None return fit_loop( model, inputs=x, targets=y, sample_weights=sample_weights, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_inputs=val_x, val_targets=val_y, val_sample_weights=val_sample_weights, shuffle=shuffle, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq, steps_name='steps_per_epoch') def evaluate(self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, **kwargs): batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) x, y, sample_weights = model._standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size, check_steps=True, steps_name='steps', steps=steps) return test_loop( model, inputs=x, targets=y, sample_weights=sample_weights, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks) def predict(self, model, x, batch_size=None, verbose=0, steps=None, callbacks=None, **kwargs): batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) x, _, _ = model._standardize_user_data( x, check_steps=True, steps_name='steps', steps=steps) return predict_loop( model, x, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks)