# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """NASNet-A models for Keras. NASNet refers to Neural Architecture Search Network, a family of models that were designed automatically by learning the model architectures directly on the dataset of interest. Here we consider NASNet-A, the highest performance model that was found for the CIFAR-10 dataset, and then extended to ImageNet 2012 dataset, obtaining state of the art performance on CIFAR-10 and ImageNet 2012. Only the NASNet-A models, and their respective weights, which are suited for ImageNet 2012 are provided. The below table describes the performance on ImageNet 2012: --------------------------------------------------------------------------- Architecture | Top-1 Acc | Top-5 Acc | Multiply-Adds | Params (M) ---------------------|-----------|-----------|----------------|------------ NASNet-A (4 @ 1056) | 74.0 % | 91.6 % | 564 M | 5.3 NASNet-A (6 @ 4032) | 82.7 % | 96.2 % | 23.8 B | 88.9 Reference: - [Learning Transferable Architectures for Scalable Image Recognition]( https://arxiv.org/abs/1707.07012) (CVPR 2018) """ import tensorflow.compat.v2 as tf from keras import backend from keras.applications import imagenet_utils from keras.engine import training from keras.layers import VersionAwareLayers from keras.utils import data_utils from keras.utils import layer_utils # isort: off from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import keras_export BASE_WEIGHTS_PATH = ( "https://storage.googleapis.com/tensorflow/keras-applications/nasnet/" ) NASNET_MOBILE_WEIGHT_PATH = BASE_WEIGHTS_PATH + "NASNet-mobile.h5" NASNET_MOBILE_WEIGHT_PATH_NO_TOP = BASE_WEIGHTS_PATH + "NASNet-mobile-no-top.h5" NASNET_LARGE_WEIGHT_PATH = BASE_WEIGHTS_PATH + "NASNet-large.h5" NASNET_LARGE_WEIGHT_PATH_NO_TOP = BASE_WEIGHTS_PATH + "NASNet-large-no-top.h5" layers = VersionAwareLayers() def NASNet( input_shape=None, penultimate_filters=4032, num_blocks=6, stem_block_filters=96, skip_reduction=True, filter_multiplier=2, include_top=True, weights="imagenet", input_tensor=None, pooling=None, classes=1000, default_size=None, classifier_activation="softmax", ): """Instantiates a NASNet model. Reference: - [Learning Transferable Architectures for Scalable Image Recognition]( https://arxiv.org/abs/1707.07012) (CVPR 2018) For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). Note: each Keras Application expects a specific kind of input preprocessing. For NasNet, call `tf.keras.applications.nasnet.preprocess_input` on your inputs before passing them to the model. `nasnet.preprocess_input` will scale input pixels between -1 and 1. Args: input_shape: Optional shape tuple, the input shape is by default `(331, 331, 3)` for NASNetLarge and `(224, 224, 3)` for NASNetMobile. It should have exactly 3 input channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. penultimate_filters: Number of filters in the penultimate layer. NASNet models use the notation `NASNet (N @ P)`, where: - N is the number of blocks - P is the number of penultimate filters num_blocks: Number of repeated blocks of the NASNet model. NASNet models use the notation `NASNet (N @ P)`, where: - N is the number of blocks - P is the number of penultimate filters stem_block_filters: Number of filters in the initial stem block skip_reduction: Whether to skip the reduction step at the tail end of the network. filter_multiplier: Controls the width of the network. - If `filter_multiplier` < 1.0, proportionally decreases the number of filters in each layer. - If `filter_multiplier` > 1.0, proportionally increases the number of filters in each layer. - If `filter_multiplier` = 1, default number of filters from the paper are used at each layer. include_top: Whether to include the fully-connected layer at the top of the network. weights: `None` (random initialization) or `imagenet` (ImageNet weights) input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. default_size: Specifies the default image size of the model classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A `keras.Model` instance. """ if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): raise ValueError( "The `weights` argument should be either " "`None` (random initialization), `imagenet` " "(pre-training on ImageNet), " "or the path to the weights file to be loaded." ) if weights == "imagenet" and include_top and classes != 1000: raise ValueError( 'If using `weights` as `"imagenet"` with `include_top` ' "as true, `classes` should be 1000" ) if ( isinstance(input_shape, tuple) and None in input_shape and weights == "imagenet" ): raise ValueError( "When specifying the input shape of a NASNet" " and loading `ImageNet` weights, " "the input_shape argument must be static " "(no None entries). Got: `input_shape=" + str(input_shape) + "`." ) if default_size is None: default_size = 331 # Determine proper input shape and default size. input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=default_size, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights, ) if backend.image_data_format() != "channels_last": logging.warning( "The NASNet family of models is only available " 'for the input data format "channels_last" ' "(width, height, channels). " "However your settings specify the default " 'data format "channels_first" (channels, width, height).' ' You should set `image_data_format="channels_last"` ' "in your Keras config located at ~/.keras/keras.json. " "The model being returned right now will expect inputs " 'to follow the "channels_last" data format.' ) backend.set_image_data_format("channels_last") old_data_format = "channels_first" else: old_data_format = None if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if penultimate_filters % (24 * (filter_multiplier**2)) != 0: raise ValueError( "For NASNet-A models, the `penultimate_filters` must be a multiple " "of 24 * (`filter_multiplier` ** 2). Current value: %d" % penultimate_filters ) channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 filters = penultimate_filters // 24 x = layers.Conv2D( stem_block_filters, (3, 3), strides=(2, 2), padding="valid", use_bias=False, name="stem_conv1", kernel_initializer="he_normal", )(img_input) x = layers.BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name="stem_bn1" )(x) p = None x, p = _reduction_a_cell( x, p, filters // (filter_multiplier**2), block_id="stem_1" ) x, p = _reduction_a_cell( x, p, filters // filter_multiplier, block_id="stem_2" ) for i in range(num_blocks): x, p = _normal_a_cell(x, p, filters, block_id="%d" % (i)) x, p0 = _reduction_a_cell( x, p, filters * filter_multiplier, block_id="reduce_%d" % (num_blocks) ) p = p0 if not skip_reduction else p for i in range(num_blocks): x, p = _normal_a_cell( x, p, filters * filter_multiplier, block_id="%d" % (num_blocks + i + 1), ) x, p0 = _reduction_a_cell( x, p, filters * filter_multiplier**2, block_id="reduce_%d" % (2 * num_blocks), ) p = p0 if not skip_reduction else p for i in range(num_blocks): x, p = _normal_a_cell( x, p, filters * filter_multiplier**2, block_id="%d" % (2 * num_blocks + i + 1), ) x = layers.Activation("relu")(x) if include_top: x = layers.GlobalAveragePooling2D()(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense( classes, activation=classifier_activation, name="predictions" )(x) else: if pooling == "avg": x = layers.GlobalAveragePooling2D()(x) elif pooling == "max": x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input model = training.Model(inputs, x, name="NASNet") # Load weights. if weights == "imagenet": if default_size == 224: # mobile version if include_top: weights_path = data_utils.get_file( "nasnet_mobile.h5", NASNET_MOBILE_WEIGHT_PATH, cache_subdir="models", file_hash="020fb642bf7360b370c678b08e0adf61", ) else: weights_path = data_utils.get_file( "nasnet_mobile_no_top.h5", NASNET_MOBILE_WEIGHT_PATH_NO_TOP, cache_subdir="models", file_hash="1ed92395b5b598bdda52abe5c0dbfd63", ) model.load_weights(weights_path) elif default_size == 331: # large version if include_top: weights_path = data_utils.get_file( "nasnet_large.h5", NASNET_LARGE_WEIGHT_PATH, cache_subdir="models", file_hash="11577c9a518f0070763c2b964a382f17", ) else: weights_path = data_utils.get_file( "nasnet_large_no_top.h5", NASNET_LARGE_WEIGHT_PATH_NO_TOP, cache_subdir="models", file_hash="d81d89dc07e6e56530c4e77faddd61b5", ) model.load_weights(weights_path) else: raise ValueError( "ImageNet weights can only be loaded with NASNetLarge" " or NASNetMobile" ) elif weights is not None: model.load_weights(weights) if old_data_format: backend.set_image_data_format(old_data_format) return model @keras_export( "keras.applications.nasnet.NASNetMobile", "keras.applications.NASNetMobile" ) def NASNetMobile( input_shape=None, include_top=True, weights="imagenet", input_tensor=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates a Mobile NASNet model in ImageNet mode. Reference: - [Learning Transferable Architectures for Scalable Image Recognition]( https://arxiv.org/abs/1707.07012) (CVPR 2018) Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. Note: each Keras Application expects a specific kind of input preprocessing. For NASNet, call `tf.keras.applications.nasnet.preprocess_input` on your inputs before passing them to the model. Args: input_shape: Optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` for NASNetMobile It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. include_top: Whether to include the fully-connected layer at the top of the network. weights: `None` (random initialization) or `imagenet` (ImageNet weights). For loading `imagenet` weights, `input_shape` should be (224, 224, 3) input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A Keras model instance. Raises: ValueError: In case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. """ return NASNet( input_shape, penultimate_filters=1056, num_blocks=4, stem_block_filters=32, skip_reduction=False, filter_multiplier=2, include_top=include_top, weights=weights, input_tensor=input_tensor, pooling=pooling, classes=classes, default_size=224, classifier_activation=classifier_activation, ) @keras_export( "keras.applications.nasnet.NASNetLarge", "keras.applications.NASNetLarge" ) def NASNetLarge( input_shape=None, include_top=True, weights="imagenet", input_tensor=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates a NASNet model in ImageNet mode. Reference: - [Learning Transferable Architectures for Scalable Image Recognition]( https://arxiv.org/abs/1707.07012) (CVPR 2018) Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. Note: each Keras Application expects a specific kind of input preprocessing. For NASNet, call `tf.keras.applications.nasnet.preprocess_input` on your inputs before passing them to the model. Args: input_shape: Optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(331, 331, 3)` for NASNetLarge. It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. include_top: Whether to include the fully-connected layer at the top of the network. weights: `None` (random initialization) or `imagenet` (ImageNet weights). For loading `imagenet` weights, `input_shape` should be (331, 331, 3) input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A Keras model instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. RuntimeError: If attempting to run this model with a backend that does not support separable convolutions. """ return NASNet( input_shape, penultimate_filters=4032, num_blocks=6, stem_block_filters=96, skip_reduction=True, filter_multiplier=2, include_top=include_top, weights=weights, input_tensor=input_tensor, pooling=pooling, classes=classes, default_size=331, classifier_activation=classifier_activation, ) def _separable_conv_block( ip, filters, kernel_size=(3, 3), strides=(1, 1), block_id=None ): """Adds 2 blocks of [relu-separable conv-batchnorm]. Args: ip: Input tensor filters: Number of output filters per layer kernel_size: Kernel size of separable convolutions strides: Strided convolution for downsampling block_id: String block_id Returns: A Keras tensor """ channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 with backend.name_scope(f"separable_conv_block_{block_id}"): x = layers.Activation("relu")(ip) if strides == (2, 2): x = layers.ZeroPadding2D( padding=imagenet_utils.correct_pad(x, kernel_size), name=f"separable_conv_1_pad_{block_id}", )(x) conv_pad = "valid" else: conv_pad = "same" x = layers.SeparableConv2D( filters, kernel_size, strides=strides, name=f"separable_conv_1_{block_id}", padding=conv_pad, use_bias=False, kernel_initializer="he_normal", )(x) x = layers.BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name=f"separable_conv_1_bn_{block_id}", )(x) x = layers.Activation("relu")(x) x = layers.SeparableConv2D( filters, kernel_size, name=f"separable_conv_2_{block_id}", padding="same", use_bias=False, kernel_initializer="he_normal", )(x) x = layers.BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name=f"separable_conv_2_bn_{block_id}", )(x) return x def _adjust_block(p, ip, filters, block_id=None): """Adjusts the input `previous path` to match the shape of the `input`. Used in situations where the output number of filters needs to be changed. Args: p: Input tensor which needs to be modified ip: Input tensor whose shape needs to be matched filters: Number of output filters to be matched block_id: String block_id Returns: Adjusted Keras tensor """ channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 img_dim = 2 if backend.image_data_format() == "channels_first" else -2 ip_shape = backend.int_shape(ip) if p is not None: p_shape = backend.int_shape(p) with backend.name_scope("adjust_block"): if p is None: p = ip elif p_shape[img_dim] != ip_shape[img_dim]: with backend.name_scope(f"adjust_reduction_block_{block_id}"): p = layers.Activation("relu", name=f"adjust_relu_1_{block_id}")( p ) p1 = layers.AveragePooling2D( (1, 1), strides=(2, 2), padding="valid", name=f"adjust_avg_pool_1_{block_id}", )(p) p1 = layers.Conv2D( filters // 2, (1, 1), padding="same", use_bias=False, name=f"adjust_conv_1_{block_id}", kernel_initializer="he_normal", )(p1) p2 = layers.ZeroPadding2D(padding=((0, 1), (0, 1)))(p) p2 = layers.Cropping2D(cropping=((1, 0), (1, 0)))(p2) p2 = layers.AveragePooling2D( (1, 1), strides=(2, 2), padding="valid", name=f"adjust_avg_pool_2_{block_id}", )(p2) p2 = layers.Conv2D( filters // 2, (1, 1), padding="same", use_bias=False, name=f"adjust_conv_2_{block_id}", kernel_initializer="he_normal", )(p2) p = layers.concatenate([p1, p2], axis=channel_dim) p = layers.BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name=f"adjust_bn_{block_id}", )(p) elif p_shape[channel_dim] != filters: with backend.name_scope(f"adjust_projection_block_{block_id}"): p = layers.Activation("relu")(p) p = layers.Conv2D( filters, (1, 1), strides=(1, 1), padding="same", name=f"adjust_conv_projection_{block_id}", use_bias=False, kernel_initializer="he_normal", )(p) p = layers.BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name=f"adjust_bn_{block_id}", )(p) return p def _normal_a_cell(ip, p, filters, block_id=None): """Adds a Normal cell for NASNet-A (Fig. 4 in the paper). Args: ip: Input tensor `x` p: Input tensor `p` filters: Number of output filters block_id: String block_id Returns: A Keras tensor """ channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 with backend.name_scope(f"normal_A_block_{block_id}"): p = _adjust_block(p, ip, filters, block_id) h = layers.Activation("relu")(ip) h = layers.Conv2D( filters, (1, 1), strides=(1, 1), padding="same", name=f"normal_conv_1_{block_id}", use_bias=False, kernel_initializer="he_normal", )(h) h = layers.BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name=f"normal_bn_1_{block_id}", )(h) with backend.name_scope("block_1"): x1_1 = _separable_conv_block( h, filters, kernel_size=(5, 5), block_id=f"normal_left1_{block_id}", ) x1_2 = _separable_conv_block( p, filters, block_id=f"normal_right1_{block_id}" ) x1 = layers.add([x1_1, x1_2], name=f"normal_add_1_{block_id}") with backend.name_scope("block_2"): x2_1 = _separable_conv_block( p, filters, (5, 5), block_id=f"normal_left2_{block_id}" ) x2_2 = _separable_conv_block( p, filters, (3, 3), block_id=f"normal_right2_{block_id}" ) x2 = layers.add([x2_1, x2_2], name=f"normal_add_2_{block_id}") with backend.name_scope("block_3"): x3 = layers.AveragePooling2D( (3, 3), strides=(1, 1), padding="same", name=f"normal_left3_{block_id}", )(h) x3 = layers.add([x3, p], name=f"normal_add_3_{block_id}") with backend.name_scope("block_4"): x4_1 = layers.AveragePooling2D( (3, 3), strides=(1, 1), padding="same", name=f"normal_left4_{block_id}", )(p) x4_2 = layers.AveragePooling2D( (3, 3), strides=(1, 1), padding="same", name=f"normal_right4_{block_id}", )(p) x4 = layers.add([x4_1, x4_2], name=f"normal_add_4_{block_id}") with backend.name_scope("block_5"): x5 = _separable_conv_block( h, filters, block_id=f"normal_left5_{block_id}" ) x5 = layers.add([x5, h], name=f"normal_add_5_{block_id}") x = layers.concatenate( [p, x1, x2, x3, x4, x5], axis=channel_dim, name=f"normal_concat_{block_id}", ) return x, ip def _reduction_a_cell(ip, p, filters, block_id=None): """Adds a Reduction cell for NASNet-A (Fig. 4 in the paper). Args: ip: Input tensor `x` p: Input tensor `p` filters: Number of output filters block_id: String block_id Returns: A Keras tensor """ channel_dim = 1 if backend.image_data_format() == "channels_first" else -1 with backend.name_scope(f"reduction_A_block_{block_id}"): p = _adjust_block(p, ip, filters, block_id) h = layers.Activation("relu")(ip) h = layers.Conv2D( filters, (1, 1), strides=(1, 1), padding="same", name=f"reduction_conv_1_{block_id}", use_bias=False, kernel_initializer="he_normal", )(h) h = layers.BatchNormalization( axis=channel_dim, momentum=0.9997, epsilon=1e-3, name=f"reduction_bn_1_{block_id}", )(h) h3 = layers.ZeroPadding2D( padding=imagenet_utils.correct_pad(h, 3), name=f"reduction_pad_1_{block_id}", )(h) with backend.name_scope("block_1"): x1_1 = _separable_conv_block( h, filters, (5, 5), strides=(2, 2), block_id=f"reduction_left1_{block_id}", ) x1_2 = _separable_conv_block( p, filters, (7, 7), strides=(2, 2), block_id=f"reduction_right1_{block_id}", ) x1 = layers.add([x1_1, x1_2], name=f"reduction_add_1_{block_id}") with backend.name_scope("block_2"): x2_1 = layers.MaxPooling2D( (3, 3), strides=(2, 2), padding="valid", name=f"reduction_left2_{block_id}", )(h3) x2_2 = _separable_conv_block( p, filters, (7, 7), strides=(2, 2), block_id=f"reduction_right2_{block_id}", ) x2 = layers.add([x2_1, x2_2], name=f"reduction_add_2_{block_id}") with backend.name_scope("block_3"): x3_1 = layers.AveragePooling2D( (3, 3), strides=(2, 2), padding="valid", name=f"reduction_left3_{block_id}", )(h3) x3_2 = _separable_conv_block( p, filters, (5, 5), strides=(2, 2), block_id=f"reduction_right3_{block_id}", ) x3 = layers.add([x3_1, x3_2], name=f"reduction_add3_{block_id}") with backend.name_scope("block_4"): x4 = layers.AveragePooling2D( (3, 3), strides=(1, 1), padding="same", name=f"reduction_left4_{block_id}", )(x1) x4 = layers.add([x2, x4]) with backend.name_scope("block_5"): x5_1 = _separable_conv_block( x1, filters, (3, 3), block_id=f"reduction_left4_{block_id}" ) x5_2 = layers.MaxPooling2D( (3, 3), strides=(2, 2), padding="valid", name=f"reduction_right5_{block_id}", )(h3) x5 = layers.add([x5_1, x5_2], name=f"reduction_add4_{block_id}") x = layers.concatenate( [x2, x3, x4, x5], axis=channel_dim, name=f"reduction_concat_{block_id}", ) return x, ip @keras_export("keras.applications.nasnet.preprocess_input") def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input( x, data_format=data_format, mode="tf" ) @keras_export("keras.applications.nasnet.decode_predictions") def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode="", ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, ) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__