# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Layer that multiplies (element-wise) several inputs.""" from keras.layers.merging.base_merge import _Merge # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Multiply") class Multiply(_Merge): """Layer that multiplies (element-wise) a list of inputs. It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape). >>> tf.keras.layers.Multiply()([np.arange(5).reshape(5, 1), ... np.arange(5, 10).reshape(5, 1)]) >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2)) >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) >>> multiplied = tf.keras.layers.Multiply()([x1, x2]) >>> multiplied.shape TensorShape([5, 8]) """ def _merge_function(self, inputs): output = inputs[0] for i in range(1, len(inputs)): output = output * inputs[i] return output @keras_export("keras.layers.multiply") def multiply(inputs, **kwargs): """Functional interface to the `Multiply` layer. Example: >>> x1 = np.arange(3.0) >>> x2 = np.arange(3.0) >>> tf.keras.layers.multiply([x1, x2]) Usage in a functional model: >>> input1 = tf.keras.layers.Input(shape=(16,)) >>> x1 = tf.keras.layers.Dense( ... 8, activation='relu')(input1) #shape=(None, 8) >>> input2 = tf.keras.layers.Input(shape=(32,)) >>> x2 = tf.keras.layers.Dense( ... 8, activation='relu')(input2) #shape=(None, 8) >>> out = tf.keras.layers.multiply([x1,x2]) #shape=(None, 8) >>> out = tf.keras.layers.Dense(4)(out) >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) Args: inputs: A list of input tensors. **kwargs: Standard layer keyword arguments. Returns: A tensor, the element-wise product of the inputs. """ return Multiply(**kwargs)(inputs)