# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the GaussianDropout layer.""" import numpy as np import tensorflow.compat.v2 as tf from keras import backend from keras.engine import base_layer from keras.utils import tf_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.GaussianDropout") class GaussianDropout(base_layer.BaseRandomLayer): """Apply multiplicative 1-centered Gaussian noise. As it is a regularization layer, it is only active at training time. Args: rate: Float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, rate, seed=None, **kwargs): super().__init__(seed=seed, **kwargs) self.supports_masking = True self.rate = rate self.seed = seed def call(self, inputs, training=None): if 0 < self.rate < 1: def noised(): stddev = np.sqrt(self.rate / (1.0 - self.rate)) return inputs * self._random_generator.random_normal( shape=tf.shape(inputs), mean=1.0, stddev=stddev, dtype=inputs.dtype, ) return backend.in_train_phase(noised, inputs, training=training) return inputs def get_config(self): config = {"rate": self.rate, "seed": self.seed} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): return input_shape