# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Nadam optimizer implementation.""" import tensorflow.compat.v2 as tf from keras.optimizers import optimizer from keras.saving.object_registration import register_keras_serializable # isort: off from tensorflow.python.util.tf_export import keras_export @register_keras_serializable() @keras_export( "keras.optimizers.experimental.Nadam", "keras.optimizers.Nadam", v1=[] ) class Nadam(optimizer.Optimizer): r"""Optimizer that implements the Nadam algorithm. Much like Adam is essentially RMSprop with momentum, Nadam is Adam with Nesterov momentum. Args: learning_rate: A `tf.Tensor`, floating point value, a schedule that is a `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to 0.001. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to 0.9. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 2nd moment estimates. Defaults to 0.999. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to 1e-7. {{base_optimizer_keyword_args}} Reference: - [Dozat, 2015](http://cs229.stanford.edu/proj2015/054_report.pdf). """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, jit_compile=True, name="Nadam", **kwargs ): super().__init__( name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, jit_compile=jit_compile, **kwargs ) self._learning_rate = self._build_learning_rate(learning_rate) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon def build(self, var_list): """Initialize optimizer variables. Nadam optimizer has 2 types of variables: momentums and velocities. Args: var_list: list of model variables to build Nadam variables on. """ super().build(var_list) if getattr(self, "_built", False): return self._built = True self._momentums = [] self._velocities = [] self._u_product = tf.Variable(1.0, dtype=var_list[0].dtype) # Keep a counter on how many times of _u_product has been computed to # avoid duplicated computations. self._u_product_counter = 1 for var in var_list: self._momentums.append( self.add_variable_from_reference( model_variable=var, variable_name="m" ) ) self._velocities.append( self.add_variable_from_reference( model_variable=var, variable_name="v" ) ) def update_step(self, gradient, variable): """Update step given gradient and the associated model variable.""" var_dtype = variable.dtype lr = tf.cast(self.learning_rate, var_dtype) local_step = tf.cast(self.iterations + 1, var_dtype) next_step = tf.cast(self.iterations + 2, var_dtype) decay = tf.cast(0.96, var_dtype) beta_1 = tf.cast(self.beta_1, var_dtype) beta_2 = tf.cast(self.beta_2, var_dtype) u_t = beta_1 * (1.0 - 0.5 * (tf.pow(decay, local_step))) u_t_1 = beta_1 * (1.0 - 0.5 * (tf.pow(decay, next_step))) def get_cached_u_product(): return self._u_product def compute_new_u_product(): u_product_t = self._u_product * u_t self._u_product.assign(u_product_t) self._u_product_counter += 1 return u_product_t u_product_t = tf.cond( self._u_product_counter == (self.iterations + 2), true_fn=get_cached_u_product, false_fn=compute_new_u_product, ) u_product_t_1 = u_product_t * u_t_1 beta_2_power = tf.pow(beta_2, local_step) var_key = self._var_key(variable) m = self._momentums[self._index_dict[var_key]] v = self._velocities[self._index_dict[var_key]] if isinstance(gradient, tf.IndexedSlices): # Sparse gradients. m.assign_add(-m * (1 - beta_1)) m.scatter_add( tf.IndexedSlices( gradient.values * (1 - beta_1), gradient.indices ) ) v.assign_add(-v * (1 - beta_2)) v.scatter_add( tf.IndexedSlices( tf.square(gradient.values) * (1 - beta_2), gradient.indices ) ) m_hat = u_t_1 * m / (1 - u_product_t_1) + (1 - u_t) * gradient / ( 1 - u_product_t ) v_hat = v / (1 - beta_2_power) variable.assign_sub((m_hat * lr) / (tf.sqrt(v_hat) + self.epsilon)) else: # Dense gradients. m.assign_add((gradient - m) * (1 - beta_1)) v.assign_add((tf.square(gradient) - v) * (1 - beta_2)) m_hat = u_t_1 * m / (1 - u_product_t_1) + (1 - u_t) * gradient / ( 1 - u_product_t ) v_hat = v / (1 - beta_2_power) variable.assign_sub((m_hat * lr) / (tf.sqrt(v_hat) + self.epsilon)) def get_config(self): config = super().get_config() config.update( { "learning_rate": self._serialize_hyperparameter( self._learning_rate ), "beta_1": self.beta_1, "beta_2": self.beta_2, "epsilon": self.epsilon, } ) return config Nadam.__doc__ = Nadam.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )