# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for preprocessing sequence data. Deprecated: `tf.keras.preprocessing.sequence` APIs are not recommended for new code. Prefer `tf.keras.utils.timeseries_dataset_from_array` and the `tf.data` APIs which provide a much more flexible mechanisms for dealing with sequences. See the [tf.data guide](https://www.tensorflow.org/guide/data) for more details. """ import json import random import numpy as np from keras.utils import data_utils # isort: off from tensorflow.python.util.tf_export import keras_export def _remove_long_seq(maxlen, seq, label): """Removes sequences that exceed the maximum length. Args: maxlen: Int, maximum length of the output sequences. seq: List of lists, where each sublist is a sequence. label: List where each element is an integer. Returns: new_seq, new_label: shortened lists for `seq` and `label`. """ new_seq, new_label = [], [] for x, y in zip(seq, label): if len(x) < maxlen: new_seq.append(x) new_label.append(y) return new_seq, new_label @keras_export("keras.preprocessing.sequence.TimeseriesGenerator") class TimeseriesGenerator(data_utils.Sequence): """Utility class for generating batches of temporal data. Deprecated: `tf.keras.preprocessing.sequence.TimeseriesGenerator` does not operate on tensors and is not recommended for new code. Prefer using a `tf.data.Dataset` which provides a more efficient and flexible mechanism for batching, shuffling, and windowing input. See the [tf.data guide](https://www.tensorflow.org/guide/data) for more details. This class takes in a sequence of data-points gathered at equal intervals, along with time series parameters such as stride, length of history, etc., to produce batches for training/validation. Arguments: data: Indexable generator (such as list or Numpy array) containing consecutive data points (timesteps). The data should be at 2D, and axis 0 is expected to be the time dimension. targets: Targets corresponding to timesteps in `data`. It should have same length as `data`. length: Length of the output sequences (in number of timesteps). sampling_rate: Period between successive individual timesteps within sequences. For rate `r`, timesteps `data[i]`, `data[i-r]`, ... `data[i - length]` are used for create a sample sequence. stride: Period between successive output sequences. For stride `s`, consecutive output samples would be centered around `data[i]`, `data[i+s]`, `data[i+2*s]`, etc. start_index: Data points earlier than `start_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. end_index: Data points later than `end_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. shuffle: Whether to shuffle output samples, or instead draw them in chronological order. reverse: Boolean: if `true`, timesteps in each output sample will be in reverse chronological order. batch_size: Number of timeseries samples in each batch (except maybe the last one). Returns: A [Sequence]( https://www.tensorflow.org/api_docs/python/tf/keras/utils/Sequence) instance. Examples: ```python from keras.preprocessing.sequence import TimeseriesGenerator import numpy as np data = np.array([[i] for i in range(50)]) targets = np.array([[i] for i in range(50)]) data_gen = TimeseriesGenerator(data, targets, length=10, sampling_rate=2, batch_size=2) assert len(data_gen) == 20 batch_0 = data_gen[0] x, y = batch_0 assert np.array_equal(x, np.array([[[0], [2], [4], [6], [8]], [[1], [3], [5], [7], [9]]])) assert np.array_equal(y, np.array([[10], [11]])) ``` """ def __init__( self, data, targets, length, sampling_rate=1, stride=1, start_index=0, end_index=None, shuffle=False, reverse=False, batch_size=128, ): if len(data) != len(targets): raise ValueError( "Data and targets have to be" + f" of same length. Data length is {len(data)}" + f" while target length is {len(targets)}" ) self.data = data self.targets = targets self.length = length self.sampling_rate = sampling_rate self.stride = stride self.start_index = start_index + length if end_index is None: end_index = len(data) - 1 self.end_index = end_index self.shuffle = shuffle self.reverse = reverse self.batch_size = batch_size if self.start_index > self.end_index: raise ValueError( "`start_index+length=%i > end_index=%i` " "is disallowed, as no part of the sequence " "would be left to be used as current step." % (self.start_index, self.end_index) ) def __len__(self): return ( self.end_index - self.start_index + self.batch_size * self.stride ) // (self.batch_size * self.stride) def __getitem__(self, index): if self.shuffle: rows = np.random.randint( self.start_index, self.end_index + 1, size=self.batch_size ) else: i = self.start_index + self.batch_size * self.stride * index rows = np.arange( i, min(i + self.batch_size * self.stride, self.end_index + 1), self.stride, ) samples = np.array( [ self.data[row - self.length : row : self.sampling_rate] for row in rows ] ) targets = np.array([self.targets[row] for row in rows]) if self.reverse: return samples[:, ::-1, ...], targets return samples, targets def get_config(self): """Returns the TimeseriesGenerator configuration as Python dictionary. Returns: A Python dictionary with the TimeseriesGenerator configuration. """ data = self.data if type(self.data).__module__ == np.__name__: data = self.data.tolist() try: json_data = json.dumps(data) except TypeError as e: raise TypeError("Data not JSON Serializable:", data) from e targets = self.targets if type(self.targets).__module__ == np.__name__: targets = self.targets.tolist() try: json_targets = json.dumps(targets) except TypeError as e: raise TypeError("Targets not JSON Serializable:", targets) from e return { "data": json_data, "targets": json_targets, "length": self.length, "sampling_rate": self.sampling_rate, "stride": self.stride, "start_index": self.start_index, "end_index": self.end_index, "shuffle": self.shuffle, "reverse": self.reverse, "batch_size": self.batch_size, } def to_json(self, **kwargs): """Returns a JSON string containing the generator's configuration. Args: **kwargs: Additional keyword arguments to be passed to `json.dumps()`. Returns: A JSON string containing the tokenizer configuration. """ config = self.get_config() timeseries_generator_config = { "class_name": self.__class__.__name__, "config": config, } return json.dumps(timeseries_generator_config, **kwargs) @keras_export("keras.preprocessing.sequence.make_sampling_table") def make_sampling_table(size, sampling_factor=1e-5): """Generates a word rank-based probabilistic sampling table. Used for generating the `sampling_table` argument for `skipgrams`. `sampling_table[i]` is the probability of sampling the word i-th most common word in a dataset (more common words should be sampled less frequently, for balance). The sampling probabilities are generated according to the sampling distribution used in word2vec: ``` p(word) = (min(1, sqrt(word_frequency / sampling_factor) / (word_frequency / sampling_factor))) ``` We assume that the word frequencies follow Zipf's law (s=1) to derive a numerical approximation of frequency(rank): `frequency(rank) ~ 1/(rank * (log(rank) + gamma) + 1/2 - 1/(12*rank))` where `gamma` is the Euler-Mascheroni constant. Args: size: Int, number of possible words to sample. sampling_factor: The sampling factor in the word2vec formula. Returns: A 1D Numpy array of length `size` where the ith entry is the probability that a word of rank i should be sampled. """ gamma = 0.577 rank = np.arange(size) rank[0] = 1 inv_fq = rank * (np.log(rank) + gamma) + 0.5 - 1.0 / (12.0 * rank) f = sampling_factor * inv_fq return np.minimum(1.0, f / np.sqrt(f)) @keras_export("keras.preprocessing.sequence.skipgrams") def skipgrams( sequence, vocabulary_size, window_size=4, negative_samples=1.0, shuffle=True, categorical=False, sampling_table=None, seed=None, ): """Generates skipgram word pairs. This function transforms a sequence of word indexes (list of integers) into tuples of words of the form: - (word, word in the same window), with label 1 (positive samples). - (word, random word from the vocabulary), with label 0 (negative samples). Read more about Skipgram in this gnomic paper by Mikolov et al.: [Efficient Estimation of Word Representations in Vector Space](http://arxiv.org/pdf/1301.3781v3.pdf) Args: sequence: A word sequence (sentence), encoded as a list of word indices (integers). If using a `sampling_table`, word indices are expected to match the rank of the words in a reference dataset (e.g. 10 would encode the 10-th most frequently occurring token). Note that index 0 is expected to be a non-word and will be skipped. vocabulary_size: Int, maximum possible word index + 1 window_size: Int, size of sampling windows (technically half-window). The window of a word `w_i` will be `[i - window_size, i + window_size+1]`. negative_samples: Float >= 0. 0 for no negative (i.e. random) samples. 1 for same number as positive samples. shuffle: Whether to shuffle the word couples before returning them. categorical: bool. if False, labels will be integers (eg. `[0, 1, 1 .. ]`), if `True`, labels will be categorical, e.g. `[[1,0],[0,1],[0,1] .. ]`. sampling_table: 1D array of size `vocabulary_size` where the entry i encodes the probability to sample a word of rank i. seed: Random seed. Returns: couples, labels: where `couples` are int pairs and `labels` are either 0 or 1. Note: By convention, index 0 in the vocabulary is a non-word and will be skipped. """ couples = [] labels = [] for i, wi in enumerate(sequence): if not wi: continue if sampling_table is not None: if sampling_table[wi] < random.random(): continue window_start = max(0, i - window_size) window_end = min(len(sequence), i + window_size + 1) for j in range(window_start, window_end): if j != i: wj = sequence[j] if not wj: continue couples.append([wi, wj]) if categorical: labels.append([0, 1]) else: labels.append(1) if negative_samples > 0: num_negative_samples = int(len(labels) * negative_samples) words = [c[0] for c in couples] random.shuffle(words) couples += [ [words[i % len(words)], random.randint(1, vocabulary_size - 1)] for i in range(num_negative_samples) ] if categorical: labels += [[1, 0]] * num_negative_samples else: labels += [0] * num_negative_samples if shuffle: if seed is None: seed = random.randint(0, 10e6) random.seed(seed) random.shuffle(couples) random.seed(seed) random.shuffle(labels) return couples, labels