# Last Change: Mon Aug 20 08:00 PM 2007 J import re import datetime import numpy as np import csv import ctypes """A module to read arff files.""" __all__ = ['MetaData', 'loadarff', 'ArffError', 'ParseArffError'] # An Arff file is basically two parts: # - header # - data # # A header has each of its components starting by @META where META is one of # the keyword (attribute of relation, for now). # TODO: # - both integer and reals are treated as numeric -> the integer info # is lost! # - Replace ValueError by ParseError or something # We know can handle the following: # - numeric and nominal attributes # - missing values for numeric attributes r_meta = re.compile(r'^\s*@') # Match a comment r_comment = re.compile(r'^%') # Match an empty line r_empty = re.compile(r'^\s+$') # Match a header line, that is a line which starts by @ + a word r_headerline = re.compile(r'^\s*@\S*') r_datameta = re.compile(r'^@[Dd][Aa][Tt][Aa]') r_relation = re.compile(r'^@[Rr][Ee][Ll][Aa][Tt][Ii][Oo][Nn]\s*(\S*)') r_attribute = re.compile(r'^\s*@[Aa][Tt][Tt][Rr][Ii][Bb][Uu][Tt][Ee]\s*(..*$)') r_nominal = re.compile(r'{(.+)}') r_date = re.compile(r"[Dd][Aa][Tt][Ee]\s+[\"']?(.+?)[\"']?$") # To get attributes name enclosed with '' r_comattrval = re.compile(r"'(..+)'\s+(..+$)") # To get normal attributes r_wcomattrval = re.compile(r"(\S+)\s+(..+$)") # ------------------------ # Module defined exception # ------------------------ class ArffError(OSError): pass class ParseArffError(ArffError): pass # ---------- # Attributes # ---------- class Attribute: type_name = None def __init__(self, name): self.name = name self.range = None self.dtype = np.object_ @classmethod def parse_attribute(cls, name, attr_string): """ Parse the attribute line if it knows how. Returns the parsed attribute, or None. """ return None def parse_data(self, data_str): """ Parse a value of this type. """ return None def __str__(self): """ Parse a value of this type. """ return self.name + ',' + self.type_name class NominalAttribute(Attribute): type_name = 'nominal' def __init__(self, name, values): super().__init__(name) self.values = values self.range = values self.dtype = (np.string_, max(len(i) for i in values)) @staticmethod def _get_nom_val(atrv): """Given a string containing a nominal type, returns a tuple of the possible values. A nominal type is defined as something framed between braces ({}). Parameters ---------- atrv : str Nominal type definition Returns ------- poss_vals : tuple possible values Examples -------- >>> get_nom_val("{floup, bouga, fl, ratata}") ('floup', 'bouga', 'fl', 'ratata') """ m = r_nominal.match(atrv) if m: attrs, _ = split_data_line(m.group(1)) return tuple(attrs) else: raise ValueError("This does not look like a nominal string") @classmethod def parse_attribute(cls, name, attr_string): """ Parse the attribute line if it knows how. Returns the parsed attribute, or None. For nominal attributes, the attribute string would be like '{, , }'. """ if attr_string[0] == '{': values = cls._get_nom_val(attr_string) return cls(name, values) else: return None def parse_data(self, data_str): """ Parse a value of this type. """ if data_str in self.values: return data_str elif data_str == '?': return data_str else: raise ValueError("%s value not in %s" % (str(data_str), str(self.values))) def __str__(self): msg = self.name + ",{" for i in range(len(self.values)-1): msg += self.values[i] + "," msg += self.values[-1] msg += "}" return msg class NumericAttribute(Attribute): def __init__(self, name): super().__init__(name) self.type_name = 'numeric' self.dtype = np.float_ @classmethod def parse_attribute(cls, name, attr_string): """ Parse the attribute line if it knows how. Returns the parsed attribute, or None. For numeric attributes, the attribute string would be like 'numeric' or 'int' or 'real'. """ attr_string = attr_string.lower().strip() if (attr_string[:len('numeric')] == 'numeric' or attr_string[:len('int')] == 'int' or attr_string[:len('real')] == 'real'): return cls(name) else: return None def parse_data(self, data_str): """ Parse a value of this type. Parameters ---------- data_str : str string to convert Returns ------- f : float where float can be nan Examples -------- >>> atr = NumericAttribute('atr') >>> atr.parse_data('1') 1.0 >>> atr.parse_data('1\\n') 1.0 >>> atr.parse_data('?\\n') nan """ if '?' in data_str: return np.nan else: return float(data_str) def _basic_stats(self, data): nbfac = data.size * 1. / (data.size - 1) return (np.nanmin(data), np.nanmax(data), np.mean(data), np.std(data) * nbfac) class StringAttribute(Attribute): def __init__(self, name): super().__init__(name) self.type_name = 'string' @classmethod def parse_attribute(cls, name, attr_string): """ Parse the attribute line if it knows how. Returns the parsed attribute, or None. For string attributes, the attribute string would be like 'string'. """ attr_string = attr_string.lower().strip() if attr_string[:len('string')] == 'string': return cls(name) else: return None class DateAttribute(Attribute): def __init__(self, name, date_format, datetime_unit): super().__init__(name) self.date_format = date_format self.datetime_unit = datetime_unit self.type_name = 'date' self.range = date_format self.dtype = np.datetime64(0, self.datetime_unit) @staticmethod def _get_date_format(atrv): m = r_date.match(atrv) if m: pattern = m.group(1).strip() # convert time pattern from Java's SimpleDateFormat to C's format datetime_unit = None if "yyyy" in pattern: pattern = pattern.replace("yyyy", "%Y") datetime_unit = "Y" elif "yy": pattern = pattern.replace("yy", "%y") datetime_unit = "Y" if "MM" in pattern: pattern = pattern.replace("MM", "%m") datetime_unit = "M" if "dd" in pattern: pattern = pattern.replace("dd", "%d") datetime_unit = "D" if "HH" in pattern: pattern = pattern.replace("HH", "%H") datetime_unit = "h" if "mm" in pattern: pattern = pattern.replace("mm", "%M") datetime_unit = "m" if "ss" in pattern: pattern = pattern.replace("ss", "%S") datetime_unit = "s" if "z" in pattern or "Z" in pattern: raise ValueError("Date type attributes with time zone not " "supported, yet") if datetime_unit is None: raise ValueError("Invalid or unsupported date format") return pattern, datetime_unit else: raise ValueError("Invalid or no date format") @classmethod def parse_attribute(cls, name, attr_string): """ Parse the attribute line if it knows how. Returns the parsed attribute, or None. For date attributes, the attribute string would be like 'date '. """ attr_string_lower = attr_string.lower().strip() if attr_string_lower[:len('date')] == 'date': date_format, datetime_unit = cls._get_date_format(attr_string) return cls(name, date_format, datetime_unit) else: return None def parse_data(self, data_str): """ Parse a value of this type. """ date_str = data_str.strip().strip("'").strip('"') if date_str == '?': return np.datetime64('NaT', self.datetime_unit) else: dt = datetime.datetime.strptime(date_str, self.date_format) return np.datetime64(dt).astype( "datetime64[%s]" % self.datetime_unit) def __str__(self): return super().__str__() + ',' + self.date_format class RelationalAttribute(Attribute): def __init__(self, name): super().__init__(name) self.type_name = 'relational' self.dtype = np.object_ self.attributes = [] self.dialect = None @classmethod def parse_attribute(cls, name, attr_string): """ Parse the attribute line if it knows how. Returns the parsed attribute, or None. For date attributes, the attribute string would be like 'date '. """ attr_string_lower = attr_string.lower().strip() if attr_string_lower[:len('relational')] == 'relational': return cls(name) else: return None def parse_data(self, data_str): # Copy-pasted elems = list(range(len(self.attributes))) escaped_string = data_str.encode().decode("unicode-escape") row_tuples = [] for raw in escaped_string.split("\n"): row, self.dialect = split_data_line(raw, self.dialect) row_tuples.append(tuple( [self.attributes[i].parse_data(row[i]) for i in elems])) return np.array(row_tuples, [(a.name, a.dtype) for a in self.attributes]) def __str__(self): return (super().__str__() + '\n\t' + '\n\t'.join(str(a) for a in self.attributes)) # ----------------- # Various utilities # ----------------- def to_attribute(name, attr_string): attr_classes = (NominalAttribute, NumericAttribute, DateAttribute, StringAttribute, RelationalAttribute) for cls in attr_classes: attr = cls.parse_attribute(name, attr_string) if attr is not None: return attr raise ParseArffError("unknown attribute %s" % attr_string) def csv_sniffer_has_bug_last_field(): """ Checks if the bug https://bugs.python.org/issue30157 is unpatched. """ # We only compute this once. has_bug = getattr(csv_sniffer_has_bug_last_field, "has_bug", None) if has_bug is None: dialect = csv.Sniffer().sniff("3, 'a'") csv_sniffer_has_bug_last_field.has_bug = dialect.quotechar != "'" has_bug = csv_sniffer_has_bug_last_field.has_bug return has_bug def workaround_csv_sniffer_bug_last_field(sniff_line, dialect, delimiters): """ Workaround for the bug https://bugs.python.org/issue30157 if is unpatched. """ if csv_sniffer_has_bug_last_field(): # Reuses code from the csv module right_regex = r'(?P[^\w\n"\'])(?P ?)(?P["\']).*?(?P=quote)(?:$|\n)' for restr in (r'(?P[^\w\n"\'])(?P ?)(?P["\']).*?(?P=quote)(?P=delim)', # ,".*?", r'(?:^|\n)(?P["\']).*?(?P=quote)(?P[^\w\n"\'])(?P ?)', # .*?", right_regex, # ,".*?" r'(?:^|\n)(?P["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space) regexp = re.compile(restr, re.DOTALL | re.MULTILINE) matches = regexp.findall(sniff_line) if matches: break # If it does not match the expression that was bugged, then this bug does not apply if restr != right_regex: return groupindex = regexp.groupindex # There is only one end of the string assert len(matches) == 1 m = matches[0] n = groupindex['quote'] - 1 quote = m[n] n = groupindex['delim'] - 1 delim = m[n] n = groupindex['space'] - 1 space = bool(m[n]) dq_regexp = re.compile( r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % {'delim': re.escape(delim), 'quote': quote}, re.MULTILINE ) doublequote = bool(dq_regexp.search(sniff_line)) dialect.quotechar = quote if delim in delimiters: dialect.delimiter = delim dialect.doublequote = doublequote dialect.skipinitialspace = space def split_data_line(line, dialect=None): delimiters = ",\t" # This can not be done in a per reader basis, and relational fields # can be HUGE csv.field_size_limit(int(ctypes.c_ulong(-1).value // 2)) # Remove the line end if any if line[-1] == '\n': line = line[:-1] # Remove potential trailing whitespace line = line.strip() sniff_line = line # Add a delimiter if none is present, so that the csv.Sniffer # does not complain for a single-field CSV. if not any(d in line for d in delimiters): sniff_line += "," if dialect is None: dialect = csv.Sniffer().sniff(sniff_line, delimiters=delimiters) workaround_csv_sniffer_bug_last_field(sniff_line=sniff_line, dialect=dialect, delimiters=delimiters) row = next(csv.reader([line], dialect)) return row, dialect # -------------- # Parsing header # -------------- def tokenize_attribute(iterable, attribute): """Parse a raw string in header (e.g., starts by @attribute). Given a raw string attribute, try to get the name and type of the attribute. Constraints: * The first line must start with @attribute (case insensitive, and space like characters before @attribute are allowed) * Works also if the attribute is spread on multilines. * Works if empty lines or comments are in between Parameters ---------- attribute : str the attribute string. Returns ------- name : str name of the attribute value : str value of the attribute next : str next line to be parsed Examples -------- If attribute is a string defined in python as r"floupi real", will return floupi as name, and real as value. >>> iterable = iter([0] * 10) # dummy iterator >>> tokenize_attribute(iterable, r"@attribute floupi real") ('floupi', 'real', 0) If attribute is r"'floupi 2' real", will return 'floupi 2' as name, and real as value. >>> tokenize_attribute(iterable, r" @attribute 'floupi 2' real ") ('floupi 2', 'real', 0) """ sattr = attribute.strip() mattr = r_attribute.match(sattr) if mattr: # atrv is everything after @attribute atrv = mattr.group(1) if r_comattrval.match(atrv): name, type = tokenize_single_comma(atrv) next_item = next(iterable) elif r_wcomattrval.match(atrv): name, type = tokenize_single_wcomma(atrv) next_item = next(iterable) else: # Not sure we should support this, as it does not seem supported by # weka. raise ValueError("multi line not supported yet") else: raise ValueError("First line unparsable: %s" % sattr) attribute = to_attribute(name, type) if type.lower() == 'relational': next_item = read_relational_attribute(iterable, attribute, next_item) # raise ValueError("relational attributes not supported yet") return attribute, next_item def tokenize_single_comma(val): # XXX we match twice the same string (here and at the caller level). It is # stupid, but it is easier for now... m = r_comattrval.match(val) if m: try: name = m.group(1).strip() type = m.group(2).strip() except IndexError as e: raise ValueError("Error while tokenizing attribute") from e else: raise ValueError("Error while tokenizing single %s" % val) return name, type def tokenize_single_wcomma(val): # XXX we match twice the same string (here and at the caller level). It is # stupid, but it is easier for now... m = r_wcomattrval.match(val) if m: try: name = m.group(1).strip() type = m.group(2).strip() except IndexError as e: raise ValueError("Error while tokenizing attribute") from e else: raise ValueError("Error while tokenizing single %s" % val) return name, type def read_relational_attribute(ofile, relational_attribute, i): """Read the nested attributes of a relational attribute""" r_end_relational = re.compile(r'^@[Ee][Nn][Dd]\s*' + relational_attribute.name + r'\s*$') while not r_end_relational.match(i): m = r_headerline.match(i) if m: isattr = r_attribute.match(i) if isattr: attr, i = tokenize_attribute(ofile, i) relational_attribute.attributes.append(attr) else: raise ValueError("Error parsing line %s" % i) else: i = next(ofile) i = next(ofile) return i def read_header(ofile): """Read the header of the iterable ofile.""" i = next(ofile) # Pass first comments while r_comment.match(i): i = next(ofile) # Header is everything up to DATA attribute ? relation = None attributes = [] while not r_datameta.match(i): m = r_headerline.match(i) if m: isattr = r_attribute.match(i) if isattr: attr, i = tokenize_attribute(ofile, i) attributes.append(attr) else: isrel = r_relation.match(i) if isrel: relation = isrel.group(1) else: raise ValueError("Error parsing line %s" % i) i = next(ofile) else: i = next(ofile) return relation, attributes class MetaData: """Small container to keep useful information on a ARFF dataset. Knows about attributes names and types. Examples -------- :: data, meta = loadarff('iris.arff') # This will print the attributes names of the iris.arff dataset for i in meta: print(i) # This works too meta.names() # Getting attribute type types = meta.types() Methods ------- names types Notes ----- Also maintains the list of attributes in order, i.e., doing for i in meta, where meta is an instance of MetaData, will return the different attribute names in the order they were defined. """ def __init__(self, rel, attr): self.name = rel self._attributes = {a.name: a for a in attr} def __repr__(self): msg = "" msg += "Dataset: %s\n" % self.name for i in self._attributes: msg += "\t%s's type is %s" % (i, self._attributes[i].type_name) if self._attributes[i].range: msg += ", range is %s" % str(self._attributes[i].range) msg += '\n' return msg def __iter__(self): return iter(self._attributes) def __getitem__(self, key): attr = self._attributes[key] return (attr.type_name, attr.range) def names(self): """Return the list of attribute names. Returns ------- attrnames : list of str The attribute names. """ return list(self._attributes) def types(self): """Return the list of attribute types. Returns ------- attr_types : list of str The attribute types. """ attr_types = [self._attributes[name].type_name for name in self._attributes] return attr_types def loadarff(f): """ Read an arff file. The data is returned as a record array, which can be accessed much like a dictionary of NumPy arrays. For example, if one of the attributes is called 'pressure', then its first 10 data points can be accessed from the ``data`` record array like so: ``data['pressure'][0:10]`` Parameters ---------- f : file-like or str File-like object to read from, or filename to open. Returns ------- data : record array The data of the arff file, accessible by attribute names. meta : `MetaData` Contains information about the arff file such as name and type of attributes, the relation (name of the dataset), etc. Raises ------ ParseArffError This is raised if the given file is not ARFF-formatted. NotImplementedError The ARFF file has an attribute which is not supported yet. Notes ----- This function should be able to read most arff files. Not implemented functionality include: * date type attributes * string type attributes It can read files with numeric and nominal attributes. It cannot read files with sparse data ({} in the file). However, this function can read files with missing data (? in the file), representing the data points as NaNs. Examples -------- >>> from scipy.io import arff >>> from io import StringIO >>> content = \"\"\" ... @relation foo ... @attribute width numeric ... @attribute height numeric ... @attribute color {red,green,blue,yellow,black} ... @data ... 5.0,3.25,blue ... 4.5,3.75,green ... 3.0,4.00,red ... \"\"\" >>> f = StringIO(content) >>> data, meta = arff.loadarff(f) >>> data array([(5.0, 3.25, 'blue'), (4.5, 3.75, 'green'), (3.0, 4.0, 'red')], dtype=[('width', '>> meta Dataset: foo \twidth's type is numeric \theight's type is numeric \tcolor's type is nominal, range is ('red', 'green', 'blue', 'yellow', 'black') """ if hasattr(f, 'read'): ofile = f else: ofile = open(f, 'rt') try: return _loadarff(ofile) finally: if ofile is not f: # only close what we opened ofile.close() def _loadarff(ofile): # Parse the header file try: rel, attr = read_header(ofile) except ValueError as e: msg = "Error while parsing header, error was: " + str(e) raise ParseArffError(msg) from e # Check whether we have a string attribute (not supported yet) hasstr = False for a in attr: if isinstance(a, StringAttribute): hasstr = True meta = MetaData(rel, attr) # XXX The following code is not great # Build the type descriptor descr and the list of convertors to convert # each attribute to the suitable type (which should match the one in # descr). # This can be used once we want to support integer as integer values and # not as numeric anymore (using masked arrays ?). if hasstr: # How to support string efficiently ? Ideally, we should know the max # size of the string before allocating the numpy array. raise NotImplementedError("String attributes not supported yet, sorry") ni = len(attr) def generator(row_iter, delim=','): # TODO: this is where we are spending time (~80%). I think things # could be made more efficiently: # - We could for example "compile" the function, because some values # do not change here. # - The function to convert a line to dtyped values could also be # generated on the fly from a string and be executed instead of # looping. # - The regex are overkill: for comments, checking that a line starts # by % should be enough and faster, and for empty lines, same thing # --> this does not seem to change anything. # 'compiling' the range since it does not change # Note, I have already tried zipping the converters and # row elements and got slightly worse performance. elems = list(range(ni)) dialect = None for raw in row_iter: # We do not abstract skipping comments and empty lines for # performance reasons. if r_comment.match(raw) or r_empty.match(raw): continue row, dialect = split_data_line(raw, dialect) yield tuple([attr[i].parse_data(row[i]) for i in elems]) a = list(generator(ofile)) # No error should happen here: it is a bug otherwise data = np.array(a, [(a.name, a.dtype) for a in attr]) return data, meta # ---- # Misc # ---- def basic_stats(data): nbfac = data.size * 1. / (data.size - 1) return np.nanmin(data), np.nanmax(data), np.mean(data), np.std(data) * nbfac def print_attribute(name, tp, data): type = tp.type_name if type == 'numeric' or type == 'real' or type == 'integer': min, max, mean, std = basic_stats(data) print("%s,%s,%f,%f,%f,%f" % (name, type, min, max, mean, std)) else: print(str(tp)) def test_weka(filename): data, meta = loadarff(filename) print(len(data.dtype)) print(data.size) for i in meta: print_attribute(i, meta[i], data[i]) # make sure nose does not find this as a test test_weka.__test__ = False if __name__ == '__main__': import sys filename = sys.argv[1] test_weka(filename)