# Copyright 2019 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Common neural network layer initializers, consistent with definitions used in Keras and Sonnet. """ import math from typing import Any, Literal, Protocol, Sequence, Tuple, Union import numpy as np import jax.numpy as jnp from jax import lax from jax import random from jax._src import core from jax._src import dtypes from jax._src.util import set_module export = set_module('jax.nn.initializers') KeyArray = random.KeyArray Array = Any # TODO: Import or define these to match # https://github.com/numpy/numpy/blob/main/numpy/typing/_dtype_like.py. DTypeLikeFloat = Any DTypeLikeComplex = Any DTypeLikeInexact = Any # DTypeLikeFloat | DTypeLikeComplex RealNumeric = Any # Scalar jnp array or float @export class Initializer(Protocol): @staticmethod def __call__(key: KeyArray, shape: core.Shape, dtype: DTypeLikeInexact = jnp.float_) -> Array: ... @export def zeros(key: KeyArray, shape: core.Shape, dtype: DTypeLikeInexact = jnp.float_) -> Array: """An initializer that returns a constant array full of zeros. The ``key`` argument is ignored. >>> import jax, jax.numpy as jnp >>> jax.nn.initializers.zeros(jax.random.PRNGKey(42), (2, 3), jnp.float32) Array([[0., 0., 0.], [0., 0., 0.]], dtype=float32) """ return jnp.zeros(shape, dtypes.canonicalize_dtype(dtype)) @export def ones(key: KeyArray, shape: core.Shape, dtype: DTypeLikeInexact = jnp.float_) -> Array: """An initializer that returns a constant array full of ones. The ``key`` argument is ignored. >>> import jax, jax.numpy as jnp >>> jax.nn.initializers.ones(jax.random.PRNGKey(42), (3, 2), jnp.float32) Array([[1., 1.], [1., 1.], [1., 1.]], dtype=float32) """ return jnp.ones(shape, dtypes.canonicalize_dtype(dtype)) @export def constant(value: Array, dtype: DTypeLikeInexact = jnp.float_ ) -> Initializer: """Builds an initializer that returns arrays full of a constant ``value``. Args: value: the constant value with which to fill the initializer. dtype: optional; the initializer's default dtype. >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.constant(-7) >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) Array([[-7., -7., -7.], [-7., -7., -7.]], dtype=float32) """ def init(key: KeyArray, shape: core.Shape, dtype: DTypeLikeInexact = dtype) -> Array: dtype = dtypes.canonicalize_dtype(dtype) return jnp.full(shape, value, dtype=dtype) return init @export def uniform(scale: RealNumeric = 1e-2, dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """Builds an initializer that returns real uniformly-distributed random arrays. Args: scale: optional; the upper bound of the random distribution. dtype: optional; the initializer's default dtype. Returns: An initializer that returns arrays whose values are uniformly distributed in the range ``[0, scale)``. >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.uniform(10.0) >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) # doctest: +SKIP Array([[7.298188 , 8.691938 , 8.7230015], [2.0818567, 1.8662417, 5.5022564]], dtype=float32) """ def init(key: KeyArray, shape: core.Shape, dtype: DTypeLikeInexact = dtype) -> Array: dtype = dtypes.canonicalize_dtype(dtype) return random.uniform(key, shape, dtype) * scale return init @export def normal(stddev: RealNumeric = 1e-2, dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """Builds an initializer that returns real normally-distributed random arrays. Args: stddev: optional; the standard deviation of the distribution. dtype: optional; the initializer's default dtype. Returns: An initializer that returns arrays whose values are normally distributed with mean ``0`` and standard deviation ``stddev``. >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.normal(5.0) >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) # doctest: +SKIP Array([[ 3.0613258 , 5.6129413 , 5.6866574 ], [-4.063663 , -4.4520254 , 0.63115686]], dtype=float32) """ def init(key: KeyArray, shape: core.Shape, dtype: DTypeLikeInexact = dtype) -> Array: dtype = dtypes.canonicalize_dtype(dtype) return random.normal(key, shape, dtype) * stddev return init @export def _compute_fans(shape: core.NamedShape, in_axis: Union[int, Sequence[int]] = -2, out_axis: Union[int, Sequence[int]] = -1, batch_axis: Union[int, Sequence[int]] = () ) -> Tuple[Array, Array]: """ Compute effective input and output sizes for a linear or convolutional layer. Axes not in in_axis, out_axis, or batch_axis are assumed to constitute the "receptive field" of a convolution (kernel spatial dimensions). """ if shape.rank <= 1: raise ValueError(f"Can't compute input and output sizes of a {shape.rank}" "-dimensional weights tensor. Must be at least 2D.") if isinstance(in_axis, int): in_size = shape[in_axis] else: in_size = math.prod([shape[i] for i in in_axis]) if isinstance(out_axis, int): out_size = shape[out_axis] else: out_size = math.prod([shape[i] for i in out_axis]) if isinstance(batch_axis, int): batch_size = shape[batch_axis] else: batch_size = math.prod([shape[i] for i in batch_axis]) receptive_field_size = shape.total / in_size / out_size / batch_size fan_in = in_size * receptive_field_size fan_out = out_size * receptive_field_size return fan_in, fan_out def _complex_uniform(key: KeyArray, shape: Union[Sequence[int], core.NamedShape], dtype: DTypeLikeInexact) -> Array: """ Sample uniform random values within a disk on the complex plane, with zero mean and unit variance. """ key_r, key_theta = random.split(key) real_dtype = np.array(0, dtype).real.dtype dtype = dtypes.to_complex_dtype(real_dtype) r = jnp.sqrt(2 * random.uniform(key_r, shape, real_dtype)).astype(dtype) theta = 2 * jnp.pi * random.uniform(key_theta, shape, real_dtype).astype(dtype) return r * jnp.exp(1j * theta) def _complex_truncated_normal(key: KeyArray, upper: Array, shape: Union[Sequence[int], core.NamedShape], dtype: DTypeLikeInexact) -> Array: """ Sample random values from a centered normal distribution on the complex plane, whose modulus is truncated to `upper`, and the variance before the truncation is one. """ key_r, key_theta = random.split(key) real_dtype = np.array(0, dtype).real.dtype dtype = dtypes.to_complex_dtype(real_dtype) t = ((1 - jnp.exp(jnp.array(-(upper ** 2), dtype))) * random.uniform(key_r, shape, real_dtype).astype(dtype)) r = jnp.sqrt(-jnp.log(1 - t)) theta = 2 * jnp.pi * random.uniform(key_theta, shape, real_dtype).astype(dtype) return r * jnp.exp(1j * theta) @export def variance_scaling( scale: RealNumeric, mode: Union[Literal["fan_in"], Literal["fan_out"], Literal["fan_avg"]], distribution: Union[Literal["truncated_normal"], Literal["normal"], Literal["uniform"]], in_axis: Union[int, Sequence[int]] = -2, out_axis: Union[int, Sequence[int]] = -1, batch_axis: Sequence[int] = (), dtype: DTypeLikeInexact = jnp.float_ ) -> Initializer: r""" Initializer that adapts its scale to the shape of the weights tensor. With ``distribution="truncated_normal"`` or ``distribution="normal"``, samples are drawn from a (truncated) normal distribution with a mean of zero and a standard deviation (after truncation, if applicable) of :math:`\sqrt{\frac{scale}{n}}`, where `n` is: * the number of input units in the weights tensor, if ``mode="fan_in"``, * the number of output units, if ``mode="fan_out"``, or * the average of the numbers of input and output units, if ``mode="fan_avg"``. This initializer can be configured with ``in_axis``, ``out_axis``, and ``batch_axis`` to work with general convolutional or dense layers; axes that are not in any of those arguments are assumed to be the "receptive field" (convolution kernel spatial axes). With ``distribution="truncated_normal"``, the absolute values of the samples are truncated at 2 standard deviations before scaling. With ``distribution="uniform"``, samples are drawn from: * a uniform interval, if `dtype` is real, or * a uniform disk, if `dtype` is complex, with a mean of zero and a standard deviation of :math:`\sqrt{\frac{scale}{n}}` where `n` is defined above. Args: scale: scaling factor (positive float). mode: one of ``"fan_in"``, ``"fan_out"``, and ``"fan_avg"``. distribution: random distribution to use. One of ``"truncated_normal"``, ``"normal"`` and ``"uniform"``. in_axis: axis or sequence of axes of the input dimension in the weights array. out_axis: axis or sequence of axes of the output dimension in the weights array. batch_axis: axis or sequence of axes in the weight array that should be ignored. dtype: the dtype of the weights. """ def init(key: KeyArray, shape: core.Shape, dtype: DTypeLikeInexact = dtype) -> Array: dtype = dtypes.canonicalize_dtype(dtype) named_shape = core.as_named_shape(shape) fan_in, fan_out = _compute_fans(named_shape, in_axis, out_axis, batch_axis) if mode == "fan_in": denominator = fan_in elif mode == "fan_out": denominator = fan_out elif mode == "fan_avg": denominator = (fan_in + fan_out) / 2 else: raise ValueError( f"invalid mode for variance scaling initializer: {mode}") variance = jnp.array(scale / denominator, dtype=dtype) if distribution == "truncated_normal": if jnp.issubdtype(dtype, jnp.floating): # constant is stddev of standard normal truncated to (-2, 2) stddev = jnp.sqrt(variance) / jnp.array(.87962566103423978, dtype) return random.truncated_normal(key, -2, 2, named_shape, dtype) * stddev else: # constant is stddev of complex standard normal truncated to 2 stddev = jnp.sqrt(variance) / jnp.array(.95311164380491208, dtype) return _complex_truncated_normal(key, 2, named_shape, dtype) * stddev elif distribution == "normal": return random.normal(key, named_shape, dtype) * jnp.sqrt(variance) elif distribution == "uniform": if jnp.issubdtype(dtype, jnp.floating): return random.uniform(key, named_shape, dtype, -1) * jnp.sqrt(3 * variance) else: return _complex_uniform(key, named_shape, dtype) * jnp.sqrt(variance) else: raise ValueError(f"invalid distribution for variance scaling initializer: {distribution}") return init @export def glorot_uniform(in_axis: Union[int, Sequence[int]] = -2, out_axis: Union[int, Sequence[int]] = -1, batch_axis: Sequence[int] = (), dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """Builds a Glorot uniform initializer (aka Xavier uniform initializer). A `Glorot uniform initializer`_ is a specialization of :func:`jax.nn.initializers.variance_scaling` where ``scale = 1.0``, ``mode="fan_avg"``, and ``distribution="uniform"``. Args: in_axis: axis or sequence of axes of the input dimension in the weights array. out_axis: axis or sequence of axes of the output dimension in the weights array. batch_axis: axis or sequence of axes in the weight array that should be ignored. dtype: the dtype of the weights. Returns: An initializer. Example: >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.glorot_uniform() >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) # doctest: +SKIP Array([[ 0.50350785, 0.8088631 , 0.81566876], [-0.6393332 , -0.6865721 , 0.11003882]], dtype=float32) .. _Glorot uniform initializer: http://proceedings.mlr.press/v9/glorot10a.html """ return variance_scaling(1.0, "fan_avg", "uniform", in_axis=in_axis, out_axis=out_axis, batch_axis=batch_axis, dtype=dtype) xavier_uniform = glorot_uniform @export def glorot_normal(in_axis: Union[int, Sequence[int]] = -2, out_axis: Union[int, Sequence[int]] = -1, batch_axis: Sequence[int] = (), dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """Builds a Glorot normal initializer (aka Xavier normal initializer). A `Glorot normal initializer`_ is a specialization of :func:`jax.nn.initializers.variance_scaling` where ``scale = 1.0``, ``mode="fan_avg"``, and ``distribution="truncated_normal"``. Args: in_axis: axis or sequence of axes of the input dimension in the weights array. out_axis: axis or sequence of axes of the output dimension in the weights array. batch_axis: axis or sequence of axes in the weight array that should be ignored. dtype: the dtype of the weights. Returns: An initializer. Example: >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.glorot_normal() >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) # doctest: +SKIP Array([[ 0.41770416, 0.75262755, 0.7619329 ], [-0.5516644 , -0.6028657 , 0.08661086]], dtype=float32) .. _Glorot normal initializer: http://proceedings.mlr.press/v9/glorot10a.html """ return variance_scaling(1.0, "fan_avg", "truncated_normal", in_axis=in_axis, out_axis=out_axis, batch_axis=batch_axis, dtype=dtype) xavier_normal = glorot_normal @export def lecun_uniform(in_axis: Union[int, Sequence[int]] = -2, out_axis: Union[int, Sequence[int]] = -1, batch_axis: Sequence[int] = (), dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """Builds a Lecun uniform initializer. A `Lecun uniform initializer`_ is a specialization of :func:`jax.nn.initializers.variance_scaling` where ``scale = 1.0``, ``mode="fan_in"``, and ``distribution="uniform"``. Args: in_axis: axis or sequence of axes of the input dimension in the weights array. out_axis: axis or sequence of axes of the output dimension in the weights array. batch_axis: axis or sequence of axes in the weight array that should be ignored. dtype: the dtype of the weights. Returns: An initializer. Example: >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.lecun_uniform() >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) # doctest: +SKIP Array([[ 0.56293887, 0.90433645, 0.9119454 ], [-0.71479625, -0.7676109 , 0.12302713]], dtype=float32) .. _Lecun uniform initializer: https://arxiv.org/abs/1706.02515 """ return variance_scaling(1.0, "fan_in", "uniform", in_axis=in_axis, out_axis=out_axis, batch_axis=batch_axis, dtype=dtype) @export def lecun_normal(in_axis: Union[int, Sequence[int]] = -2, out_axis: Union[int, Sequence[int]] = -1, batch_axis: Sequence[int] = (), dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """Builds a Lecun normal initializer. A `Lecun normal initializer`_ is a specialization of :func:`jax.nn.initializers.variance_scaling` where ``scale = 1.0``, ``mode="fan_in"``, and ``distribution="truncated_normal"``. Args: in_axis: axis or sequence of axes of the input dimension in the weights array. out_axis: axis or sequence of axes of the output dimension in the weights array. batch_axis: axis or sequence of axes in the weight array that should be ignored. dtype: the dtype of the weights. Returns: An initializer. Example: >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.lecun_normal() >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) # doctest: +SKIP Array([[ 0.46700746, 0.8414632 , 0.8518669 ], [-0.61677957, -0.67402434, 0.09683388]], dtype=float32) .. _Lecun normal initializer: https://arxiv.org/abs/1706.02515 """ return variance_scaling(1.0, "fan_in", "truncated_normal", in_axis=in_axis, out_axis=out_axis, batch_axis=batch_axis, dtype=dtype) @export def he_uniform(in_axis: Union[int, Sequence[int]] = -2, out_axis: Union[int, Sequence[int]] = -1, batch_axis: Sequence[int] = (), dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """Builds a He uniform initializer (aka Kaiming uniform initializer). A `He uniform initializer`_ is a specialization of :func:`jax.nn.initializers.variance_scaling` where ``scale = 2.0``, ``mode="fan_in"``, and ``distribution="uniform"``. Args: in_axis: axis or sequence of axes of the input dimension in the weights array. out_axis: axis or sequence of axes of the output dimension in the weights array. batch_axis: axis or sequence of axes in the weight array that should be ignored. dtype: the dtype of the weights. Returns: An initializer. Example: >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.kaiming_uniform() >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) # doctest: +SKIP Array([[ 0.79611576, 1.2789248 , 1.2896855 ], [-1.0108745 , -1.0855657 , 0.17398663]], dtype=float32) .. _He uniform initializer: https://arxiv.org/abs/1502.01852 """ return variance_scaling(2.0, "fan_in", "uniform", in_axis=in_axis, out_axis=out_axis, batch_axis=batch_axis, dtype=dtype) kaiming_uniform = he_uniform @export def he_normal(in_axis: Union[int, Sequence[int]] = -2, out_axis: Union[int, Sequence[int]] = -1, batch_axis: Sequence[int] = (), dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """Builds a He normal initializer (aka Kaiming normal initializer). A `He normal initializer`_ is a specialization of :func:`jax.nn.initializers.variance_scaling` where ``scale = 2.0``, ``mode="fan_in"``, and ``distribution="truncated_normal"``. Args: in_axis: axis or sequence of axes of the input dimension in the weights array. out_axis: axis or sequence of axes of the output dimension in the weights array. batch_axis: axis or sequence of axes in the weight array that should be ignored. dtype: the dtype of the weights. Returns: An initializer. Example: >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.kaiming_normal() >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) # doctest: +SKIP Array([[ 0.6604483 , 1.1900088 , 1.2047218 ], [-0.87225807, -0.95321447, 0.1369438 ]], dtype=float32) .. _He normal initializer: https://arxiv.org/abs/1502.01852 """ return variance_scaling(2.0, "fan_in", "truncated_normal", in_axis=in_axis, out_axis=out_axis, batch_axis=batch_axis, dtype=dtype) kaiming_normal = he_normal @export def orthogonal(scale: RealNumeric = 1.0, column_axis: int = -1, dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """ Builds an initializer that returns uniformly distributed orthogonal matrices. If the shape is not square, the matrices will have orthonormal rows or columns depending on which side is smaller. Args: scale: the upper bound of the uniform distribution. column_axis: the axis that contains the columns that should be orthogonal. dtype: the default dtype of the weights. Returns: An orthogonal initializer. Example: >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.orthogonal() >>> initializer(jax.random.PRNGKey(42), (2, 3), jnp.float32) # doctest: +SKIP Array([[ 3.9026976e-01, 7.2495741e-01, -5.6756169e-01], [ 8.8047469e-01, -4.7409311e-01, -1.3157725e-04]], dtype=float32) """ def init(key: KeyArray, shape: core.Shape, dtype: DTypeLikeInexact = dtype) -> Array: dtype = dtypes.canonicalize_dtype(dtype) if len(shape) < 2: raise ValueError("orthogonal initializer requires at least a 2D shape") n_rows, n_cols = math.prod(shape) // shape[column_axis], shape[column_axis] matrix_shape = (n_cols, n_rows) if n_rows < n_cols else (n_rows, n_cols) A = random.normal(key, matrix_shape, dtype) Q, R = jnp.linalg.qr(A) diag_sign = lax.broadcast_to_rank(jnp.sign(jnp.diag(R)), rank=Q.ndim) Q *= diag_sign # needed for a uniform distribution if n_rows < n_cols: Q = Q.T Q = jnp.reshape(Q, tuple(np.delete(shape, column_axis)) + (shape[column_axis],)) Q = jnp.moveaxis(Q, -1, column_axis) return scale * Q return init @export def delta_orthogonal( scale: RealNumeric = 1.0, column_axis: int = -1, dtype: DTypeLikeInexact = jnp.float_) -> Initializer: """ Builds an initializer for delta orthogonal kernels. Args: scale: the upper bound of the uniform distribution. column_axis: the axis that contains the columns that should be orthogonal. dtype: the default dtype of the weights. Returns: A `delta orthogonal initializer`_. The shape passed to the initializer must be 3D, 4D, or 5D. Example: >>> import jax, jax.numpy as jnp >>> initializer = jax.nn.initializers.delta_orthogonal() >>> initializer(jax.random.PRNGKey(42), (3, 3, 3), jnp.float32) # doctest: +SKIP Array([[[ 0. , 0. , 0. ], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ]], [[ 0.27858758, -0.7949833 , -0.53887904], [ 0.9120717 , 0.04322892, 0.40774566], [-0.30085585, -0.6050892 , 0.73712474]], [[ 0. , 0. , 0. ], [ 0. , 0. , 0. ], [ 0. , 0. , 0. ]]], dtype=float32) .. _delta orthogonal initializer: https://arxiv.org/abs/1806.05393 """ def init(key: KeyArray, shape: core.Shape, dtype: DTypeLikeInexact = dtype) -> Array: dtype = dtypes.canonicalize_dtype(dtype) if len(shape) not in [3, 4, 5]: raise ValueError("Delta orthogonal initializer requires a 3D, 4D or 5D " "shape.") if shape[-1] < shape[-2]: raise ValueError("`fan_in` must be less or equal than `fan_out`. ") ortho_init = orthogonal(scale=scale, column_axis=column_axis, dtype=dtype) ortho_matrix = ortho_init(key, shape[-2:]) W = jnp.zeros(shape, dtype=dtype) if len(shape) == 3: k = shape[0] return W.at[(k-1)//2, ...].set(ortho_matrix) elif len(shape) == 4: k1, k2 = shape[:2] return W.at[(k1-1)//2, (k2-1)//2, ...].set(ortho_matrix) else: k1, k2, k3 = shape[:3] return W.at[(k1-1)//2, (k2-1)//2, (k3-1)//2, ...].set(ortho_matrix) return init