# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the base Layer class, from which all layers inherit.""" import functools import itertools import threading import numpy as np import tensorflow.compat.v2 as tf from keras import backend from keras import constraints from keras import initializers from keras import regularizers from keras.engine import base_layer from keras.engine import base_layer_utils from keras.engine import input_spec from keras.mixed_precision import autocast_variable from keras.mixed_precision import loss_scale_optimizer from keras.mixed_precision import policy from keras.saving.legacy.saved_model import layer_serialization from keras.utils import generic_utils from keras.utils import layer_utils from keras.utils import object_identity from keras.utils import tf_inspect from keras.utils import tf_utils # A module that only depends on `keras.layers` import these from here. from keras.utils.generic_utils import to_snake_case # noqa: F401 from keras.utils.tf_utils import is_tensor_or_tensor_list # noqa: F401 # isort: off from tensorflow.python.platform import tf_logging from tensorflow.tools.docs import doc_controls class Layer(base_layer.Layer): """Base layer class. This is the class from which all layers inherit. A layer is a class implementing common neural networks operations, such as convolution, batch norm, etc. These operations require managing weights, losses, updates, and inter-layer connectivity. Users will just instantiate a layer and then treat it as a callable. We recommend that descendants of `Layer` implement the following methods: * `__init__()`: Save configuration in member variables * `build()`: Called once from `__call__`, when we know the shapes of inputs and `dtype`. Should have the calls to `add_weight()`, and then call the super's `build()` (which sets `self.built = True`, which is nice in case the user wants to call `build()` manually before the first `__call__`). * `call()`: Called in `__call__` after making sure `build()` has been called once. Should actually perform the logic of applying the layer to the input tensors (which should be passed in as the first argument). Args: trainable: Boolean, whether the layer's variables should be trainable. name: String name of the layer. dtype: The dtype of the layer's computations and weights (default of `None` means use `tf.keras.backend.floatx` in TensorFlow 2, or the type of the first input in TensorFlow 1). dynamic: Set this to `True` if your layer should only be run eagerly, and should not be used to generate a static computation graph. This would be the case for a Tree-RNN or a recursive network, for example, or generally for any layer that manipulates tensors using Python control flow. If `False`, we assume that the layer can safely be used to generate a static computation graph. Attributes: name: The name of the layer (string). dtype: The dtype of the layer's computations and weights. If mixed precision is used with a `tf.keras.mixed_precision.Policy`, this is instead just the dtype of the layer's weights, as the computations are done in a different dtype. updates: List of update ops of this layer. losses: List of losses added by this layer. trainable_weights: List of variables to be included in backprop. non_trainable_weights: List of variables that should not be included in backprop. weights: The concatenation of the lists trainable_weights and non_trainable_weights (in this order). trainable: Whether the layer should be trained (boolean). input_spec: Optional (list of) `InputSpec` object(s) specifying the constraints on inputs that can be accepted by the layer. Each layer has a dtype, which is typically the dtype of the layer's computations and variables. A layer's dtype can be queried via the `Layer.dtype` property. The dtype is specified with the `dtype` constructor argument. In TensorFlow 2, the dtype defaults to `tf.keras.backend.floatx()` if no dtype is passed. `floatx()` itself defaults to "float32". Additionally, layers will cast their inputs to the layer's dtype in TensorFlow 2. When mixed precision is used, layers may have different computation and variable dtypes. See `tf.keras.mixed_precision.Policy` for details on layer dtypes. """ # See tf.Module for the usage of this property. The key for # _obj_reference_counts_dict is a Trackable, which could be a variable or # layer etc. tf.Module._flatten will fail to flatten the key since it is # trying to convert Trackable to a string. This attribute can be ignored # even after the fix of nest lib, since the trackable object should already # been available as individual attributes. _obj_reference_counts_dict just # contains a copy of them. _TF_MODULE_IGNORED_PROPERTIES = frozenset( itertools.chain( ("_obj_reference_counts_dict",), tf.Module._TF_MODULE_IGNORED_PROPERTIES, ) ) @tf.__internal__.tracking.no_automatic_dependency_tracking def __init__( self, trainable=True, name=None, dtype=None, dynamic=False, **kwargs ): self._instrument_layer_creation() # These properties should be set by the user via keyword arguments. # note that 'dtype', 'input_shape' and 'batch_input_shape' # are only applicable to input layers: do not pass these keywords # to non-input layers. allowed_kwargs = { "input_dim", "input_shape", "batch_input_shape", "batch_size", "weights", "activity_regularizer", "autocast", "implementation", } # Validate optional keyword arguments. generic_utils.validate_kwargs(kwargs, allowed_kwargs) # Mutable properties # Indicates whether the layer's weights are updated during training # and whether the layer's updates are run during training. self._trainable = trainable # A stateful layer is a layer whose updates are run during inference # too, for instance stateful RNNs. self._stateful = False # Indicates whether `build` needs to be called upon layer call, to # create the layer's weights. self.built = False self._build_input_shape = None # Provides information about which inputs are compatible with the layer. self._input_spec = None self.supports_masking = False self._init_set_name(name) self._activity_regularizer = regularizers.get( kwargs.pop("activity_regularizer", None) ) self._maybe_create_attribute("_trainable_weights", []) self._maybe_create_attribute("_non_trainable_weights", []) self._updates = [] # Object to store all thread local layer properties. self._thread_local = threading.local() # A list of zero-argument lambdas which return Tensors, used for # variable regularizers. self._callable_losses = [] # A list of symbolic Tensors containing activity regularizers and losses # manually added through `add_loss` in graph-building mode. self._losses = [] # A list of metric instances corresponding to the symbolic metric # tensors added using the `add_metric` API. self._metrics = [] # Note that models also have a dtype policy, as they are layers. For # functional models, the policy is only used in Model.compile, which # wraps the optimizer with a LossScaleOptimizer if the policy name is # "mixed_float16". Subclassed models additionally use the policy's # compute and variable dtypes, as like any ordinary layer. self._set_dtype_policy(dtype) # Boolean indicating whether the layer automatically casts its inputs to # the layer's compute_dtype. self._autocast = kwargs.get( "autocast", base_layer_utils.v2_dtype_behavior_enabled() ) # Dependencies tracked via attribute assignment. # All layers in order of horizontal graph traversal. # Entries are unique. For models includes input and output layers. self._maybe_create_attribute("_self_tracked_trackables", []) # These lists will be filled via successive calls # to self._add_inbound_node(). # Used in symbolic mode only, only in conjunction with graph-networks self._inbound_nodes_value = [] self._outbound_nodes_value = [] self._init_call_fn_args() # Whether the `call` method can be used to build a TF graph without # issues. This attribute has no effect if the model is created using # the Functional API. Instead, `model.dynamic` is determined based on # the internal layers. self._dynamic = dynamic # Manage input shape information if passed. if "input_dim" in kwargs and "input_shape" not in kwargs: # Backwards compatibility: alias 'input_dim' to 'input_shape'. kwargs["input_shape"] = (kwargs["input_dim"],) if "input_shape" in kwargs or "batch_input_shape" in kwargs: # In this case we will later create an input layer # to insert before the current layer if "batch_input_shape" in kwargs: batch_input_shape = tuple(kwargs["batch_input_shape"]) elif "input_shape" in kwargs: if "batch_size" in kwargs: batch_size = kwargs["batch_size"] else: batch_size = None batch_input_shape = (batch_size,) + tuple(kwargs["input_shape"]) self._batch_input_shape = batch_input_shape # Manage initial weight values if passed. self._initial_weights = kwargs.get("weights", None) # Whether the layer will track any layers that are set as attribute on # itself as sub-layers, the weights from the sub-layers will be included # in the parent layer's variables() as well. Default to True, which # means auto tracking is turned on. Certain subclass might want to turn # it off, like the Sequential model. self._auto_track_sub_layers = True # Mark this layer as having been originally built as a tf1 layer/model self._originally_built_as_v1 = True # For backward compat reasons, most built-in layers do not guarantee # That they will 100% preserve the structure of input args when saving # / loading configs. E.g. they may un-nest an arg that is # a list with one element. self._preserve_input_structure_in_config = False @tf.__internal__.tracking.no_automatic_dependency_tracking @generic_utils.default def build(self, input_shape): """Creates the variables of the layer (for subclass implementers). This is a method that implementers of subclasses of `Layer` or `Model` can override if they need a state-creation step in-between layer instantiation and layer call. This is typically used to create the weights of `Layer` subclasses. Args: input_shape: Instance of `TensorShape`, or list of instances of `TensorShape` if the layer expects a list of inputs (one instance per input). """ if not hasattr(self.build, "_is_default"): self._build_input_shape = input_shape self.built = True @doc_controls.for_subclass_implementers def call(self, inputs, **kwargs): """This is where the layer's logic lives. Args: inputs: Input tensor, or list/tuple of input tensors. **kwargs: Additional keyword arguments. Returns: A tensor or list/tuple of tensors. """ return inputs @doc_controls.for_subclass_implementers def _add_trackable(self, trackable_object, trainable): """Adds a Trackable object to this layer's state. Args: trackable_object: The tf.tracking.Trackable object to add. trainable: Boolean, whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean and variance). Returns: The TrackableWeightHandler used to track this object. """ if isinstance( trackable_object, base_layer_utils.TrackableWeightHandler ): handler = trackable_object else: handler = base_layer_utils.TrackableWeightHandler(trackable_object) if trainable: self._trainable_weights.append(handler) else: self._non_trainable_weights.append(handler) return handler @doc_controls.for_subclass_implementers def add_weight( self, name=None, shape=None, dtype=None, initializer=None, regularizer=None, trainable=None, constraint=None, partitioner=None, use_resource=None, synchronization=tf.VariableSynchronization.AUTO, aggregation=tf.compat.v1.VariableAggregation.NONE, **kwargs, ): """Adds a new variable to the layer. Args: name: Variable name. shape: Variable shape. Defaults to scalar if unspecified. dtype: The type of the variable. Defaults to `self.dtype` or `float32`. initializer: Initializer instance (callable). regularizer: Regularizer instance (callable). trainable: Boolean, whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean and variance). Note that `trainable` cannot be `True` if `synchronization` is set to `ON_READ`. constraint: Constraint instance (callable). partitioner: Partitioner to be passed to the `Trackable` API. use_resource: Whether to use `ResourceVariable`. synchronization: Indicates when a distributed variable will be aggregated. Accepted values are constants defined in the class `tf.VariableSynchronization`. By default the synchronization is set to `AUTO` and the current `DistributionStrategy` chooses when to synchronize. If `synchronization` is set to `ON_READ`, `trainable` must not be set to `True`. aggregation: Indicates how a distributed variable will be aggregated. Accepted values are constants defined in the class `tf.VariableAggregation`. **kwargs: Additional keyword arguments. Accepted values are `getter`, `collections`, `experimental_autocast` and `caching_device`. Returns: The created variable. Usually either a `Variable` or `ResourceVariable` instance. If `partitioner` is not `None`, a `PartitionedVariable` instance is returned. Raises: RuntimeError: If called with partitioned variable regularization and eager execution is enabled. ValueError: When giving unsupported dtype and no initializer or when trainable has been set to True with synchronization set as `ON_READ`. """ if shape is None: shape = () # Validate optional keyword arguments. for kwarg in kwargs: if kwarg not in [ "getter", "collections", "experimental_autocast", "caching_device", ]: raise TypeError("Unknown keyword argument:", kwarg) has_custom_getter = "getter" in kwargs getter = kwargs.pop("getter", base_layer_utils.make_variable) collections_arg = kwargs.pop("collections", None) # 'experimental_autocast' can be set to False by the caller to indicate # an AutoCastVariable should never be created. autocast = kwargs.pop("experimental_autocast", True) # See the docstring for tf.Variable about the details for # caching_device. caching_device = kwargs.pop("caching_device", None) if dtype is None: dtype = self.dtype or backend.floatx() dtype = tf.as_dtype(dtype) if self._dtype_policy.variable_dtype is None: # The policy is "_infer", so we infer the policy from the variable # dtype. self._set_dtype_policy(policy.Policy(dtype.base_dtype.name)) initializer = initializers.get(initializer) regularizer = regularizers.get(regularizer) constraint = constraints.get(constraint) if synchronization == tf.VariableSynchronization.ON_READ: if trainable: raise ValueError( "Synchronization value can be set to " "VariableSynchronization.ON_READ only for non-trainable " "variables. You have specified trainable=True and " "synchronization=VariableSynchronization.ON_READ." ) else: # Set trainable to be false when the variable is to be synced on # read. trainable = False elif trainable is None: trainable = True # Initialize variable when no initializer provided if initializer is None: # If dtype is DT_FLOAT, provide a uniform unit scaling initializer if dtype.is_floating: initializer = initializers.get("glorot_uniform") # If dtype is DT_INT/DT_UINT, provide a default value `zero` # If dtype is DT_BOOL, provide a default value `FALSE` elif dtype.is_integer or dtype.is_unsigned or dtype.is_bool: initializer = tf.compat.v1.zeros_initializer() # NOTES:Do we need to support for handling DT_STRING and DT_COMPLEX # here? elif not has_custom_getter: # When `getter` is specified, it's possibly fine for # `initializer` to be None since it's up to the custom `getter` # to raise error in case it indeed needs `initializer`. raise ValueError( "An initializer for variable %s of type %s is required" " for layer %s" % (name, dtype.base_dtype, self.name) ) if ( autocast and self._dtype_policy.compute_dtype != self._dtype_policy.variable_dtype and dtype.is_floating ): # Wrap 'getter' with a version that returns an AutoCastVariable. old_getter = getter def getter(*args, **kwargs): variable = old_getter(*args, **kwargs) return autocast_variable.create_autocast_variable(variable) # Also the caching_device does not work with the mixed precision # API, disable it if it is specified. # TODO(b/142020079): Re-enable it once the bug is fixed. if caching_device is not None: tf_logging.warning( "`caching_device` does not work with mixed precision API. " "Ignoring user specified `caching_device`." ) caching_device = None variable = self._add_variable_with_custom_getter( name=name, shape=shape, # TODO(allenl): a `make_variable` equivalent should be added as a # `Trackable` method. getter=getter, # Manage errors in Layer rather than Trackable. overwrite=True, initializer=initializer, dtype=dtype, constraint=constraint, trainable=trainable, partitioner=partitioner, use_resource=use_resource, collections=collections_arg, synchronization=synchronization, aggregation=aggregation, caching_device=caching_device, ) if regularizer is not None: # TODO(fchollet): in the future, this should be handled at the # level of variable creation, and weight regularization losses # should be variable attributes. name_in_scope = variable.name[: variable.name.find(":")] self._handle_weight_regularization( name_in_scope, variable, regularizer ) if base_layer_utils.is_split_variable(variable): for v in variable: backend.track_variable(v) if trainable: self._trainable_weights.append(v) else: self._non_trainable_weights.append(v) else: backend.track_variable(variable) if trainable: self._trainable_weights.append(variable) else: self._non_trainable_weights.append(variable) return variable @generic_utils.default def get_config(self): """Returns the config of the layer. A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration. The config of a layer does not include connectivity information, nor the layer class name. These are handled by `Network` (one layer of abstraction above). Returns: Python dictionary. """ all_args = tf_inspect.getfullargspec(self.__init__).args config = {"name": self.name, "trainable": self.trainable} if hasattr(self, "_batch_input_shape"): config["batch_input_shape"] = self._batch_input_shape config["dtype"] = policy.serialize(self._dtype_policy) if hasattr(self, "dynamic"): # Only include `dynamic` in the `config` if it is `True` if self.dynamic: config["dynamic"] = self.dynamic elif "dynamic" in all_args: all_args.remove("dynamic") expected_args = config.keys() # Finds all arguments in the `__init__` that are not in the config: extra_args = [arg for arg in all_args if arg not in expected_args] # Check that either the only argument in the `__init__` is `self`, # or that `get_config` has been overridden: if len(extra_args) > 1 and hasattr(self.get_config, "_is_default"): raise NotImplementedError( "Layers with arguments in `__init__` must " "override `get_config`." ) return config @classmethod def from_config(cls, config): """Creates a layer from its config. This method is the reverse of `get_config`, capable of instantiating the same layer from the config dictionary. It does not handle layer connectivity (handled by Network), nor weights (handled by `set_weights`). Args: config: A Python dictionary, typically the output of get_config. Returns: A layer instance. """ return cls(**config) def compute_output_shape(self, input_shape): """Computes the output shape of the layer. If the layer has not been built, this method will call `build` on the layer. This assumes that the layer will later be used with inputs that match the input shape provided here. Args: input_shape: Shape tuple (tuple of integers) or list of shape tuples (one per output tensor of the layer). Shape tuples can include None for free dimensions, instead of an integer. Returns: An input shape tuple. """ if tf.executing_eagerly(): # In this case we build the model first in order to do shape # inference. This is acceptable because the framework only calls # `compute_output_shape` on shape values that the layer would later # be built for. It would however cause issues in case a user # attempts to use `compute_output_shape` manually with shapes that # are incompatible with the shape the Layer will be called on (these # users will have to implement `compute_output_shape` themselves). self._maybe_build(input_shape) with tf.compat.v1.get_default_graph().as_default(): graph = tf.__internal__.FuncGraph("graph") with graph.as_default(): input_shape = tf_utils.convert_shapes( input_shape, to_tuples=False ) inputs = tf.nest.map_structure( base_layer_utils.generate_placeholders_from_shape, input_shape, ) try: outputs = self(inputs, training=False) except TypeError as e: raise NotImplementedError( "We could not automatically infer the static " "shape of the layer's output. Please implement the " "`compute_output_shape` method on your layer (%s)." % self.__class__.__name__ ) from e return tf.nest.map_structure(lambda t: t.shape, outputs) raise NotImplementedError @doc_controls.for_subclass_implementers def compute_output_signature(self, input_signature): """Compute the output tensor signature of the layer based on the inputs. Unlike a TensorShape object, a TensorSpec object contains both shape and dtype information for a tensor. This method allows layers to provide output dtype information if it is different from the input dtype. For any layer that doesn't implement this function, the framework will fall back to use `compute_output_shape`, and will assume that the output dtype matches the input dtype. Args: input_signature: Single TensorSpec or nested structure of TensorSpec objects, describing a candidate input for the layer. Returns: Single TensorSpec or nested structure of TensorSpec objects, describing how the layer would transform the provided input. Raises: TypeError: If input_signature contains a non-TensorSpec object. """ def check_type_return_shape(s): if not isinstance(s, tf.TensorSpec): raise TypeError( "Only TensorSpec signature types are supported, " "but saw signature entry: {}.".format(s) ) return s.shape input_shape = tf.nest.map_structure( check_type_return_shape, input_signature ) output_shape = self.compute_output_shape(input_shape) dtype = self._compute_dtype if dtype is None: input_dtypes = [s.dtype for s in tf.nest.flatten(input_signature)] # Default behavior when self.dtype is None, is to use the first # input's dtype. dtype = input_dtypes[0] return tf.nest.map_structure( lambda s: tf.TensorSpec(dtype=dtype, shape=s), output_shape ) @generic_utils.default def compute_mask(self, inputs, mask=None): """Computes an output mask tensor. Args: inputs: Tensor or list of tensors. mask: Tensor or list of tensors. Returns: None or a tensor (or list of tensors, one per output tensor of the layer). """ if not self.supports_masking: if any(m is not None for m in tf.nest.flatten(mask)): raise TypeError( "Layer " + self.name + " does not support masking, " "but was passed an input_mask: " + str(mask) ) # masking not explicitly supported: return None as mask. return None # if masking is explicitly supported, by default # carry over the input mask return mask def __call__(self, *args, **kwargs): """Wraps `call`, applying pre- and post-processing steps. Args: *args: Positional arguments to be passed to `self.call`. **kwargs: Keyword arguments to be passed to `self.call`. Returns: Output tensor(s). Note: - The following optional keyword arguments are reserved for specific uses: * `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference. * `mask`: Boolean input mask. - If the layer's `call` method takes a `mask` argument (as some Keras layers do), its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support. Raises: ValueError: if the layer's `call` method returns None (an invalid value). RuntimeError: if `super().__init__()` was not called in the constructor. """ self._assert_built_as_v1() if not hasattr(self, "_thread_local"): raise RuntimeError( "You must call `super().__init__()` in the layer constructor." ) # Grab the first positional or keyword argument. if args: inputs = args[0] args = args[1:] elif self._call_spec.arg_names[0] in kwargs: inputs = kwargs.pop(self._call_spec.arg_names[0]) else: raise ValueError( "The first argument to `Layer.call` must always be passed." ) call_context = base_layer_utils.call_context() input_list = tf.nest.flatten(inputs) # We will attempt to build a TF graph if & only if all inputs are # symbolic. This is always the case in graph mode. It can also be the # case in eager mode when all inputs can be traced back to # `keras.Input()` (when building models using the functional API). build_graph = tf_utils.are_all_symbolic_tensors(input_list) # Accept NumPy and scalar inputs by converting to Tensors. if any(isinstance(x, (np.ndarray, float, int)) for x in input_list): def _convert_non_tensor(x): # Don't call `ops.convert_to_tensor` on all `inputs` because # `SparseTensors` can't be converted to `Tensor`. if isinstance(x, (np.ndarray, float, int)): return tf.convert_to_tensor(x) return x inputs = tf.nest.map_structure(_convert_non_tensor, inputs) input_list = tf.nest.flatten(inputs) # Handle `mask` propagation from previous layer to current layer. Masks # can be propagated explicitly via the `mask` argument, or implicitly # via setting the `_keras_mask` attribute on the inputs to a Layer. # Masks passed explicitly take priority. mask_arg_passed_by_framework = False input_masks = self._collect_input_masks(inputs, args, kwargs) if ( self._expects_mask_arg and input_masks is not None and not self._call_spec.arg_was_passed("mask", args, kwargs) ): mask_arg_passed_by_framework = True kwargs["mask"] = input_masks # If `training` argument is None or not explicitly passed, # propagate `training` value from this layer's calling layer. training_value = None training_arg_passed_by_framework = False # Priority 1: `training` was explicitly passed. if self._call_spec.arg_was_passed("training", args, kwargs): training_value = self._call_spec.get_arg_value( "training", args, kwargs ) if not self._expects_training_arg: kwargs.pop("training") if training_value is None: # Priority 2: `training` was passed to a parent layer. if call_context.training is not None: training_value = call_context.training # Priority 3a: `learning_phase()` has been set. elif backend.global_learning_phase_is_set(): training_value = backend.learning_phase() # Priority 3b: Pass the `learning_phase()` if in the Keras # FuncGraph. elif build_graph: with backend.get_graph().as_default(): if base_layer_utils.is_in_keras_graph(): training_value = backend.learning_phase() if self._expects_training_arg and training_value is not None: # Force the training_value to be bool type which matches to the # contract for layer/model call args. if tf.is_tensor(training_value): training_value = tf.cast(training_value, tf.bool) else: training_value = bool(training_value) args, kwargs = self._call_spec.set_arg_value( "training", training_value, args, kwargs ) training_arg_passed_by_framework = True # Only create Keras history if at least one tensor originates from a # `keras.Input`. Otherwise this Layer may be being used outside the # Keras framework. if build_graph and base_layer_utils.needs_keras_history(inputs): base_layer_utils.create_keras_history(inputs) with call_context.enter(self, inputs, build_graph, training_value): # Check input assumptions set after layer building, e.g. input # shape. if build_graph: # Symbolic execution on symbolic tensors. We will attempt to # build the corresponding TF subgraph inside # `backend.get_graph()` input_spec.assert_input_compatibility( self.input_spec, inputs, self.name ) graph = backend.get_graph() with graph.as_default(), backend.name_scope(self._name_scope()): # Build layer if applicable (if the `build` method has been # overridden). self._maybe_build(inputs) cast_inputs = self._maybe_cast_inputs(inputs) # Wrapping `call` function in autograph to allow for dynamic # control flow and control dependencies in call. We are # limiting this to subclassed layers as autograph is # strictly needed only for subclassed layers and models. # tf_convert will respect the value of autograph setting in # the enclosing tf.function, if any. if base_layer_utils.is_subclassed( self ) and not base_layer_utils.from_saved_model(self): call_fn = tf.__internal__.autograph.tf_convert( self.call, tf.__internal__.autograph.control_status_ctx(), ) else: call_fn = self.call if not self.dynamic: try: with autocast_variable.enable_auto_cast_variables( self._compute_dtype_object ): outputs = call_fn(cast_inputs, *args, **kwargs) except tf.errors.OperatorNotAllowedInGraphError as e: raise TypeError( "You are attempting to use Python control " "flow in a layer that was not declared to be " "dynamic. Pass `dynamic=True` to the class " 'constructor.\nEncountered error:\n"""\n' + str(e) + '\n"""' ) else: # We will use static shape inference to return symbolic # tensors matching the specifications of the layer # outputs. Since `self.dynamic` is True, we will never # attempt to run the underlying TF graph (which is # disconnected). # TODO(fchollet): consider py_func as an alternative, # which would enable us to run the underlying graph if # needed. outputs = self._symbolic_call(inputs) if outputs is None: raise ValueError( "A layer's `call` method should return a " "Tensor or a list of Tensors, not None " "(layer: " + self.name + ")." ) if base_layer_utils.have_all_keras_metadata(inputs): if training_arg_passed_by_framework: args, kwargs = self._call_spec.set_arg_value( "training", None, args, kwargs, pop_kwarg_if_none=True, ) if mask_arg_passed_by_framework: kwargs.pop("mask") outputs = self._set_connectivity_metadata( (inputs,) + args, kwargs, outputs ) self._handle_activity_regularization(inputs, outputs) self._set_mask_metadata(inputs, outputs, input_masks) if hasattr(self, "_set_inputs") and not self.inputs: # Subclassed network: explicitly set metadata normally # set by a call to self._set_inputs(). # TODO(b/120997007): This should be done in Eager as # well, but causes garbage collection issues because of # the placeholders created on the default Keras graph. self._set_save_spec(inputs, args, kwargs) self._set_inputs(inputs, outputs) else: # Eager execution on data tensors. with backend.name_scope(self._name_scope()): self._maybe_build(inputs) cast_inputs = self._maybe_cast_inputs(inputs) with autocast_variable.enable_auto_cast_variables( self._compute_dtype_object ): outputs = self.call(cast_inputs, *args, **kwargs) self._handle_activity_regularization(inputs, outputs) self._set_mask_metadata(inputs, outputs, input_masks) return outputs def _assert_built_as_v1(self): if not hasattr(self, "_originally_built_as_v1"): raise ValueError( "Your Layer or Model is in an invalid state. " "This can happen for the following cases:\n " "1. You might be interleaving estimator/non-estimator models " "or interleaving models/layers made in " "tf.compat.v1.Graph.as_default() with models/layers created " "outside of it. " "Converting a model to an estimator (via model_to_estimator) " "invalidates all models/layers made before the conversion " "(even if they were not the model converted to an estimator). " "Similarly, making a layer or a model inside a " "a tf.compat.v1.Graph invalidates all layers/models you " "previously made outside of the graph.\n" "2. You might be using a custom keras layer implementation " "with custom __init__ which didn't call super().__init__. " " Please check the implementation of %s and its bases." % (type(self),) ) @property def dtype(self): return self._dtype_policy.variable_dtype @property def name(self): return self._name @property def dynamic(self): return any(layer._dynamic for layer in self._flatten_layers()) @property @doc_controls.do_not_generate_docs def stateful(self): return any(layer._stateful for layer in self._flatten_layers()) @stateful.setter def stateful(self, value): self._stateful = value @property def trainable(self): return self._trainable @trainable.setter def trainable(self, value): self._trainable = value for layer in getattr(self, "_self_tracked_trackables", []): layer.trainable = value @property def activity_regularizer(self): """Optional regularizer function for the output of this layer.""" return self._activity_regularizer @activity_regularizer.setter def activity_regularizer(self, regularizer): """Optional regularizer function for the output of this layer.""" self._activity_regularizer = regularizer @property def input_spec(self): return self._input_spec @input_spec.setter # Must be decorated to prevent tracking, since the input_spec can be nested # InputSpec objects. @tf.__internal__.tracking.no_automatic_dependency_tracking def input_spec(self, value): for v in tf.nest.flatten(value): if v is not None and not isinstance(v, input_spec.InputSpec): raise TypeError( "Layer input_spec must be an instance of InputSpec. " "Got: {}".format(v) ) self._input_spec = value @property def updates(self): collected_updates = [] all_layers = self._flatten_layers() with backend.get_graph().as_default(): for layer in all_layers: if not layer.trainable and not layer.stateful: continue for u in layer._updates: if callable(u): try: u = u() except ValueError as e: if "InaccessibleTensorError" in type(e).__name__: # For one specific case of error we try to raise # a more meaningful error message about the # graph if we can. This error is an internal TF # symbol that is not publicly exposed, so we # check the name directly rather than using a # direct import. base_layer_utils.check_graph_consistency( method="add_update", force_raise=True ) # check_graph_consistency may not always raise. raise base_layer_utils.check_graph_consistency( u, method="add_update" ) collected_updates.append(u) return collected_updates @property def losses(self): """Losses which are associated with this `Layer`. Variable regularization tensors are created when this property is accessed, so it is eager safe: accessing `losses` under a `tf.GradientTape` will propagate gradients back to the corresponding variables. Returns: A list of tensors. """ collected_losses = [] all_layers = self._flatten_layers() for layer in all_layers: # If any eager losses are present, we assume the model to be part of # an eager training loop (either a custom one or the one used when # `run_eagerly=True`) and so we always return just the eager losses. collected_losses.extend(layer._losses) for regularizer in layer._callable_losses: loss_tensor = regularizer() if loss_tensor is not None: collected_losses.append(loss_tensor) return collected_losses @doc_controls.for_subclass_implementers def add_loss(self, losses, inputs=None): """Add loss tensor(s), potentially dependent on layer inputs. Some losses (for instance, activity regularization losses) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs `a` and `b`, some entries in `layer.losses` may be dependent on `a` and some on `b`. This method automatically keeps track of dependencies. This method can be used inside a subclassed layer or model's `call` function, in which case `losses` should be a Tensor or list of Tensors. Example: ```python class MyLayer(tf.keras.layers.Layer): def call(inputs, self): self.add_loss(tf.abs(tf.reduce_mean(inputs)), inputs=True) return inputs ``` This method can also be called directly on a Functional Model during construction. In this case, any loss Tensors passed to this Model must be symbolic and be able to be traced back to the model's `Input`s. These losses become part of the model's topology and are tracked in `get_config`. Example: ```python inputs = tf.keras.Input(shape=(10,)) x = tf.keras.layers.Dense(10)(inputs) outputs = tf.keras.layers.Dense(1)(x) model = tf.keras.Model(inputs, outputs) # Activity regularization. model.add_loss(tf.abs(tf.reduce_mean(x))) ``` If this is not the case for your loss (if, for example, your loss references a `Variable` of one of the model's layers), you can wrap your loss in a zero-argument lambda. These losses are not tracked as part of the model's topology since they can't be serialized. Example: ```python inputs = tf.keras.Input(shape=(10,)) x = tf.keras.layers.Dense(10)(inputs) outputs = tf.keras.layers.Dense(1)(x) model = tf.keras.Model(inputs, outputs) # Weight regularization. model.add_loss(lambda: tf.reduce_mean(x.kernel)) ``` Args: losses: Loss tensor, or list/tuple of tensors. Rather than tensors, losses may also be zero-argument callables which create a loss tensor. inputs: Ignored when executing eagerly. If anything other than None is passed, it signals the losses are conditional on some of the layer's inputs, and thus they should only be run where these inputs are available. This is the case for activity regularization losses, for instance. If `None` is passed, the losses are assumed to be unconditional, and will apply across all dataflows of the layer (e.g. weight regularization losses). """ def _tag_unconditional(loss): """Process the loss and tag it by setting ._unconditional_loss.""" if callable(loss): # We run the loss without autocasting, as regularizers are often # numerically unstable in float16. with autocast_variable.enable_auto_cast_variables(None): loss = loss() if loss is None: # Will be filtered out when computing the .losses property return None if not tf.is_tensor(loss): loss = tf.convert_to_tensor(loss, dtype=backend.floatx()) loss._unconditional_loss = inputs is None return loss losses = tf.nest.flatten(losses) callable_losses = [] symbolic_losses = [] for loss in losses: if callable(loss): callable_losses.append( functools.partial(_tag_unconditional, loss) ) continue if loss is None: continue if not tf.is_tensor(loss): loss = tf.convert_to_tensor(loss, dtype=backend.floatx()) # TF Functions should take the eager path. if ( tf_utils.is_symbolic_tensor(loss) and not base_layer_utils.is_in_tf_function() ): symbolic_losses.append(_tag_unconditional(loss)) base_layer_utils.check_graph_consistency( loss, method="add_loss" ) self._callable_losses.extend(callable_losses) in_call_context = base_layer_utils.call_context().in_call if in_call_context: for symbolic_loss in symbolic_losses: self._losses.append(symbolic_loss) else: for symbolic_loss in symbolic_losses: if getattr(self, "_is_graph_network", False): self._graph_network_add_loss(symbolic_loss) else: # Possible a loss was added in a Layer's `build`. self._losses.append(symbolic_loss) @property def metrics(self): collected_metrics = [] for layer in self._flatten_layers(): collected_metrics.extend(layer._metrics) return collected_metrics @doc_controls.for_subclass_implementers def add_metric(self, value, aggregation=None, name=None): """Adds metric tensor to the layer. Args: value: Metric tensor. aggregation: Sample-wise metric reduction function. If `aggregation=None`, it indicates that the metric tensor provided has been aggregated already. eg, `bin_acc = BinaryAccuracy(name='acc')` followed by `model.add_metric(bin_acc(y_true, y_pred))`. If aggregation='mean', the given metric tensor will be sample-wise reduced using `mean` function. eg, `model.add_metric(tf.reduce_sum(outputs), name='output_mean', aggregation='mean')`. name: String metric name. Raises: ValueError: If `aggregation` is anything other than None or `mean`. """ if aggregation is not None and aggregation != "mean": raise ValueError( "We currently support only `mean` sample-wise metric " "aggregation. You provided aggregation=`%s`" % aggregation ) from_metric_obj = hasattr(value, "_metric_obj") is_symbolic = tf_utils.is_symbolic_tensor(value) in_call_context = base_layer_utils.call_context().in_call if name is None and not from_metric_obj: # Eg. `self.add_metric(math_ops.reduce_sum(x), aggregation='mean')` # In eager mode, we use metric name to lookup a metric. Without a # name, a new Mean metric wrapper will be created on every # model/layer call. So, we raise an error when no name is provided. # We will do the same for symbolic mode for consistency although a # name will be generated if no name is provided. # We will not raise this error in the foll use case for the sake of # consistency as name in provided in the metric constructor. # mean = metrics.Mean(name='my_metric') # model.add_metric(mean(outputs)) raise ValueError( "Please provide a name for your metric like " "`self.add_metric(tf.reduce_sum(inputs), " "name='mean_activation', aggregation='mean')`" ) elif from_metric_obj: name = value._metric_obj.name if in_call_context: # TF Function path should take the eager path. self._symbolic_add_metric(value, aggregation, name) else: if not is_symbolic: raise ValueError( "Expected a symbolic Tensor for the metric value, " "received: " + str(value) ) # Possible a metric was added in a Layer's `build`. if not getattr(self, "_is_graph_network", False): with backend.get_graph().as_default(): self._symbolic_add_metric(value, aggregation, name) return if from_metric_obj: raise ValueError( "Using the result of calling a `Metric` object " "when calling `add_metric` on a Functional " "Model is not supported. Please pass the " "Tensor to monitor directly." ) # Insert layers into the Keras Graph Network. self._graph_network_add_metric(value, aggregation, name) @doc_controls.for_subclass_implementers def add_update(self, updates): """Add update op(s), potentially dependent on layer inputs. Weight updates (for instance, the updates of the moving mean and variance in a BatchNormalization layer) may be dependent on the inputs passed when calling a layer. Hence, when reusing the same layer on different inputs `a` and `b`, some entries in `layer.updates` may be dependent on `a` and some on `b`. This method automatically keeps track of dependencies. The `get_updates_for` method allows to retrieve the updates relevant to a specific set of inputs. This call is ignored when eager execution is enabled (in that case, variable updates are run on the fly and thus do not need to be tracked for later execution). Args: updates: Update op, or list/tuple of update ops, or zero-arg callable that returns an update op. A zero-arg callable should be passed in order to disable running the updates by setting `trainable=False` on this Layer, when executing in Eager mode. """ call_context = base_layer_utils.call_context() if ( tf.distribute.has_strategy() and tf.distribute.in_cross_replica_context() # When saving the model, the distribution strategy context should be # ignored, following the default path for adding updates. and not call_context.saving ): # Updates don't need to be run in a cross-replica context. return updates = generic_utils.to_list(updates) if call_context.in_call: relevant_inputs = call_context.inputs else: inbound_nodes = getattr(self, "_inbound_nodes", []) relevant_inputs = [node.input_tensors for node in inbound_nodes] def process_update(x): """Standardize update ops. Args: x: Tensor, op, or callable. Returns: An update op. """ if callable(x): update = lambda: process_update(x()) return update() elif isinstance(x, tf.Operation): update = x elif hasattr(x, "op"): update = x.op else: update = tf.convert_to_tensor(x) reachable = tf_utils.get_reachable_from_inputs( relevant_inputs, [update] ) update._unconditional_update = update not in reachable return update updates = [process_update(x) for x in updates] self._updates.extend(updates) def set_weights(self, weights): """Sets the weights of the layer, from Numpy arrays. The weights of a layer represent the state of the layer. This function sets the weight values from numpy arrays. The weight values should be passed in the order they are created by the layer. Note that the layer's weights must be instantiated before calling this function by calling the layer. For example, a Dense layer returns a list of two values-- per-output weights and the bias value. These can be used to set the weights of another Dense layer: >>> a = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(1.)) >>> a_out = a(tf.convert_to_tensor([[1., 2., 3.]])) >>> a.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)] >>> b = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(2.)) >>> b_out = b(tf.convert_to_tensor([[10., 20., 30.]])) >>> b.get_weights() [array([[2.], [2.], [2.]], dtype=float32), array([0.], dtype=float32)] >>> b.set_weights(a.get_weights()) >>> b.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)] Args: weights: a list of Numpy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of `get_weights`). Raises: ValueError: If the provided weights list does not match the layer's specifications. """ params = self.weights expected_num_weights = 0 for param in params: if isinstance(param, base_layer_utils.TrackableWeightHandler): expected_num_weights += param.num_tensors else: expected_num_weights += 1 if expected_num_weights != len(weights): raise ValueError( 'You called `set_weights(weights)` on layer "%s" ' "with a weight list of length %s, but the layer was " "expecting %s weights. Provided weights: %s..." % ( self.name, len(weights), expected_num_weights, str(weights)[:50], ) ) weight_index = 0 weight_value_tuples = [] for param in params: if isinstance(param, base_layer_utils.TrackableWeightHandler): num_tensors = param.num_tensors tensors = weights[weight_index : weight_index + num_tensors] param.set_weights(tensors) weight_index += num_tensors else: weight = weights[weight_index] weight_shape = weight.shape if hasattr(weight, "shape") else () ref_shape = param.shape if not ref_shape.is_compatible_with(weight_shape): raise ValueError( "Layer weight shape %s not compatible with provided " "weight shape %s" % (ref_shape, weight_shape) ) weight_value_tuples.append((param, weight)) weight_index += 1 backend.batch_set_value(weight_value_tuples) def get_weights(self): """Returns the current weights of the layer. The weights of a layer represent the state of the layer. This function returns both trainable and non-trainable weight values associated with this layer as a list of Numpy arrays, which can in turn be used to load state into similarly parameterized layers. For example, a Dense layer returns a list of two values-- per-output weights and the bias value. These can be used to set the weights of another Dense layer: >>> a = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(1.)) >>> a_out = a(tf.convert_to_tensor([[1., 2., 3.]])) >>> a.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)] >>> b = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(2.)) >>> b_out = b(tf.convert_to_tensor([[10., 20., 30.]])) >>> b.get_weights() [array([[2.], [2.], [2.]], dtype=float32), array([0.], dtype=float32)] >>> b.set_weights(a.get_weights()) >>> b.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)] Returns: Weights values as a list of numpy arrays. """ weights = self.weights output_weights = [] for weight in weights: if isinstance(weight, base_layer_utils.TrackableWeightHandler): output_weights.extend(weight.get_tensors()) else: output_weights.append(weight) return backend.batch_get_value(output_weights) def get_updates_for(self, inputs): """Retrieves updates relevant to a specific set of inputs. Args: inputs: Input tensor or list/tuple of input tensors. Returns: List of update ops of the layer that depend on `inputs`. """ if inputs is None: # Requesting unconditional updates. return [u for u in self.updates if u._unconditional_update] # Requesting input-conditional updates. updates = [u for u in self.updates if not u._unconditional_update] inputs = tf.nest.flatten(inputs) reachable = tf_utils.get_reachable_from_inputs(inputs, updates) return [u for u in updates if u in reachable] def get_losses_for(self, inputs): """Retrieves losses relevant to a specific set of inputs. Args: inputs: Input tensor or list/tuple of input tensors. Returns: List of loss tensors of the layer that depend on `inputs`. """ if inputs is None: # Requesting unconditional losses. return [l for l in self.losses if l._unconditional_loss] # Requesting input-conditional losses. losses = [l for l in self.losses if not l._unconditional_loss] inputs = tf.nest.flatten(inputs) reachable = tf_utils.get_reachable_from_inputs(inputs, losses) return [l for l in losses if l in reachable] def get_input_mask_at(self, node_index): """Retrieves the input mask tensor(s) of a layer at a given node. Args: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A mask tensor (or list of tensors if the layer has multiple inputs). """ inputs = self.get_input_at(node_index) if isinstance(inputs, list): return [getattr(x, "_keras_mask", None) for x in inputs] else: return getattr(inputs, "_keras_mask", None) def get_output_mask_at(self, node_index): """Retrieves the output mask tensor(s) of a layer at a given node. Args: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A mask tensor (or list of tensors if the layer has multiple outputs). """ output = self.get_output_at(node_index) if isinstance(output, list): return [getattr(x, "_keras_mask", None) for x in output] else: return getattr(output, "_keras_mask", None) @property def input_mask(self): """Retrieves the input mask tensor(s) of a layer. Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer. Returns: Input mask tensor (potentially None) or list of input mask tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. """ inputs = self.input if isinstance(inputs, list): return [getattr(x, "_keras_mask", None) for x in inputs] else: return getattr(inputs, "_keras_mask", None) @property def output_mask(self): """Retrieves the output mask tensor(s) of a layer. Only applicable if the layer has exactly one inbound node, i.e. if it is connected to one incoming layer. Returns: Output mask tensor (potentially None) or list of output mask tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. """ output = self.output if isinstance(output, list): return [getattr(x, "_keras_mask", None) for x in output] else: return getattr(output, "_keras_mask", None) def get_input_shape_at(self, node_index): """Retrieves the input shape(s) of a layer at a given node. Args: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A shape tuple (or list of shape tuples if the layer has multiple inputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index( node_index, "input_shapes", "input shape" ) def get_output_shape_at(self, node_index): """Retrieves the output shape(s) of a layer at a given node. Args: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first time the layer was called. Returns: A shape tuple (or list of shape tuples if the layer has multiple outputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index( node_index, "output_shapes", "output shape" ) def get_input_at(self, node_index): """Retrieves the input tensor(s) of a layer at a given node. Args: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first input node of the layer. Returns: A tensor (or list of tensors if the layer has multiple inputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index( node_index, "input_tensors", "input" ) def get_output_at(self, node_index): """Retrieves the output tensor(s) of a layer at a given node. Args: node_index: Integer, index of the node from which to retrieve the attribute. E.g. `node_index=0` will correspond to the first output node of the layer. Returns: A tensor (or list of tensors if the layer has multiple outputs). Raises: RuntimeError: If called in Eager mode. """ return self._get_node_attribute_at_index( node_index, "output_tensors", "output" ) @property def input(self): """Retrieves the input tensor(s) of a layer. Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer. Returns: Input tensor or list of input tensors. Raises: RuntimeError: If called in Eager mode. AttributeError: If no inbound nodes are found. """ if not self._inbound_nodes: raise AttributeError( "Layer " + self.name + " is not connected, no input to return." ) return self._get_node_attribute_at_index(0, "input_tensors", "input") @property def output(self): """Retrieves the output tensor(s) of a layer. Only applicable if the layer has exactly one output, i.e. if it is connected to one incoming layer. Returns: Output tensor or list of output tensors. Raises: AttributeError: if the layer is connected to more than one incoming layers. RuntimeError: if called in Eager mode. """ if not self._inbound_nodes: raise AttributeError( "Layer " + self.name + " has no inbound nodes." ) return self._get_node_attribute_at_index(0, "output_tensors", "output") @property def input_shape(self): """Retrieves the input shape(s) of a layer. Only applicable if the layer has exactly one input, i.e. if it is connected to one incoming layer, or if all inputs have the same shape. Returns: Input shape, as an integer shape tuple (or list of shape tuples, one tuple per input tensor). Raises: AttributeError: if the layer has no defined input_shape. RuntimeError: if called in Eager mode. """ if not self._inbound_nodes: raise AttributeError( f'The layer "{self.name}" has never been called ' "and thus has no defined input shape. Note that the " "`input_shape` property is only available for " "Functional and Sequential models." ) all_input_shapes = set( [str(node.input_shapes) for node in self._inbound_nodes] ) if len(all_input_shapes) == 1: return self._inbound_nodes[0].input_shapes else: raise AttributeError( 'The layer "' + str(self.name) + " has multiple inbound nodes, " "with different input shapes. Hence " 'the notion of "input shape" is ' "ill-defined for the layer. " "Use `get_input_shape_at(node_index)` " "instead." ) def count_params(self): """Count the total number of scalars composing the weights. Returns: An integer count. Raises: ValueError: if the layer isn't yet built (in which case its weights aren't yet defined). """ if not self.built: if getattr(self, "_is_graph_network", False): with tf_utils.maybe_init_scope(self): self._maybe_build(self.inputs) else: raise ValueError( "You tried to call `count_params` on " + self.name + ", but the layer isn't built. " "You can build it manually via: `" + self.name + ".build(batch_input_shape)`." ) return layer_utils.count_params(self.weights) @property def output_shape(self): """Retrieves the output shape(s) of a layer. Only applicable if the layer has one output, or if all outputs have the same shape. Returns: Output shape, as an integer shape tuple (or list of shape tuples, one tuple per output tensor). Raises: AttributeError: if the layer has no defined output shape. RuntimeError: if called in Eager mode. """ if not self._inbound_nodes: raise AttributeError( "The layer has never been called " "and thus has no defined output shape." ) all_output_shapes = set( [str(node.output_shapes) for node in self._inbound_nodes] ) if len(all_output_shapes) == 1: return self._inbound_nodes[0].output_shapes else: raise AttributeError( 'The layer "%s"' " has multiple inbound nodes, " "with different output shapes. Hence " 'the notion of "output shape" is ' "ill-defined for the layer. " "Use `get_output_shape_at(node_index)` " "instead." % self.name ) @property @doc_controls.do_not_doc_inheritable def inbound_nodes(self): """Deprecated, do NOT use! Only for external Keras compatibility .""" return self._inbound_nodes @property @doc_controls.do_not_doc_inheritable def outbound_nodes(self): """Deprecated, do NOT use! Only for external Keras compatibility .""" return self._outbound_nodes ########################################################################### # Methods & attributes below are public aliases of other methods. # ########################################################################### @property def variables(self): """Returns the list of all layer variables/weights. Alias of `self.weights`. Returns: A list of variables. """ return self.weights @property def trainable_variables(self): return self.trainable_weights @property def non_trainable_variables(self): return self.non_trainable_weights ############################################################################ # Methods & attributes below are all private and only used by the framework. ############################################################################ @property def _inbound_nodes(self): return self._inbound_nodes_value @_inbound_nodes.setter @tf.__internal__.tracking.no_automatic_dependency_tracking def _inbound_nodes(self, value): self._inbound_nodes_value = value @property def _outbound_nodes(self): return self._outbound_nodes_value @_outbound_nodes.setter @tf.__internal__.tracking.no_automatic_dependency_tracking def _outbound_nodes(self, value): self._outbound_nodes_value = value def _set_dtype_policy(self, dtype): """Sets self._dtype_policy.""" if isinstance(dtype, policy.Policy): self._dtype_policy = dtype elif isinstance(dtype, dict): self._dtype_policy = policy.deserialize(dtype) elif isinstance(dtype, str) and dtype in ( "mixed_float16", "mixed_bfloat16", ): # The isinstance check is required since np.dtype raises an error if # compared to a non-dtype string. self._dtype_policy = policy.Policy(dtype) elif dtype: self._dtype_policy = policy.Policy(tf.as_dtype(dtype).name) else: self._dtype_policy = policy.global_policy() if ( self._dtype_policy.name == "mixed_float16" and not loss_scale_optimizer.strategy_supports_loss_scaling() ): # Although only loss scaling doesn't support certain strategies, to # avoid confusion, we disallow the 'mixed_float16' policy with # unsupported strategies. This is because 'mixed_float16' requires # loss scaling for numeric stability. strategy = tf.distribute.get_strategy() raise ValueError( "Mixed precision is not supported with the " "tf.distribute.Strategy: %s. Either stop using mixed " 'precision by removing the use of the "%s" policy or ' "use a different Strategy, e.g. a MirroredStrategy." % (strategy.__class__.__name__, self._dtype_policy.name) ) # Performance optimization: cache the compute dtype as a Dtype object or # None, so that str to Dtype conversion doesn't happen in # Layer.__call__. if self._dtype_policy.compute_dtype: self._compute_dtype_object = tf.as_dtype( self._dtype_policy.compute_dtype ) else: self._compute_dtype_object = None # TODO(reedwm): Expose this property? @property def _compute_dtype(self): """The layer's compute dtype. Unless mixed-precision is used, this is the same as `Layer.dtype`. If self._autocast is True, layer's will cast floating-point inputs to this. Returns: The layer's compute dtype. """ return self._dtype_policy.compute_dtype def _maybe_cast_inputs(self, inputs): """Maybe casts the inputs to the compute dtype. If self._compute_dtype is floating-point, and self_autocast is True, floating-point inputs are casted to self._compute_dtype. Args: inputs: Input tensor, or structure of input tensors. Returns: `inputs`, but tensors may have been casted to self._compute_dtype """ compute_dtype = self._compute_dtype if ( self._autocast and compute_dtype and tf.as_dtype(compute_dtype).is_floating ): def f(x): """Cast a single Tensor or TensorSpec to the compute dtype.""" cast_types = (tf.Tensor, tf.SparseTensor, tf.RaggedTensor) if ( isinstance(x, cast_types) and x.dtype.is_floating and x.dtype.base_dtype.name != compute_dtype ): return tf.cast(x, compute_dtype) elif isinstance(x, tf.TensorSpec) and x.dtype.is_floating: # Inputs may be TensorSpecs when this function is called # from model._set_inputs. return tf.TensorSpec(x.shape, compute_dtype, x.name) else: return x return tf.nest.map_structure(f, inputs) else: return inputs # _dtype used to be an attribute set in the constructor. We still expose it # because some clients still use it. # TODO(reedwm): Deprecate, then remove the _dtype property. @property def _dtype(self): # This is equivalent to returning self.dtype . We do not return # self.dtype as it would cause infinite recursion in a few subclasses, # which override "dtype" to return self._dtype. return self._dtype_policy.variable_dtype @_dtype.setter def _dtype(self, value): value = tf.as_dtype(value).name self._set_dtype_policy(policy.Policy(value)) def _name_scope(self): return self.name def _init_set_name(self, name, zero_based=True): if not name: self._name = backend.unique_object_name( generic_utils.to_snake_case(self.__class__.__name__), zero_based=zero_based, ) else: self._name = name def _get_existing_metric(self, name=None): match = [m for m in self._metrics if m.name == name] if not match: return if len(match) > 1: raise ValueError( "Please provide different names for the metrics you have " 'added. We found {} metrics with the name: "{}"'.format( len(match), name ) ) return match[0] def _symbolic_add_metric(self, value, aggregation=None, name=None): base_layer_utils.check_graph_consistency(value, method="add_metric") match = self._get_existing_metric(name) if aggregation is None: # Iterate over the metrics and check if the given metric exists # already. This can happen when a metric instance is created in # subclassed model layer `__init__` and we have tracked that # instance already in model.__setattr__. if match: result_tensor = value metric_obj = match elif hasattr(value, "_metric_obj"): # We track the instance using the metadata on the result tensor. result_tensor = value metric_obj = result_tensor._metric_obj self._metrics.append(metric_obj) else: raise ValueError( "We do not support adding an aggregated metric result " "tensor that is not the output of a " "`tf.keras.metrics.Metric` metric instance. Without " "having access to the metric instance we cannot reset the " "state of a metric after every epoch during training. You " "can create a `tf.keras.metrics.Metric` instance and pass " "the result here or pass an un-aggregated result with " "`aggregation` parameter set as `mean`. For example: " "`self.add_metric(tf.reduce_sum(inputs), " "name='mean_activation', aggregation='mean')` " ) else: # If a non-aggregated tensor is given as input (ie. `aggregation` is # explicitly set to `mean`), we wrap the tensor in `Mean` metric. if match: result_tensor = match(value) metric_obj = match else: metric_obj, result_tensor = base_layer_utils.create_mean_metric( value, name ) self._metrics.append(metric_obj) def _handle_weight_regularization(self, name, variable, regularizer): """Create lambdas which compute regularization losses.""" def _loss_for_variable(v): """Creates a regularization loss `Tensor` for variable `v`.""" with backend.name_scope(name + "/Regularizer"): regularization = regularizer(v) return regularization if base_layer_utils.is_split_variable(variable): for v in variable: self.add_loss(functools.partial(_loss_for_variable, v)) else: self.add_loss(functools.partial(_loss_for_variable, variable)) def _handle_activity_regularization(self, inputs, outputs): # Apply activity regularization. # Note that it should be applied every time the layer creates a new # output, since it is output-specific. if self._activity_regularizer: output_list = tf.nest.flatten(outputs) with backend.name_scope("ActivityRegularizer"): for output in output_list: activity_loss = tf.convert_to_tensor( self._activity_regularizer(output) ) batch_size = tf.cast( tf.compat.v1.shape(output)[0], activity_loss.dtype ) # Make activity regularization strength batch-agnostic. mean_activity_loss = activity_loss / batch_size base_layer_utils.check_graph_consistency( mean_activity_loss, method="activity_regularizer" ) self.add_loss(mean_activity_loss, inputs=inputs) def _set_mask_metadata(self, inputs, outputs, previous_mask): flat_outputs = tf.nest.flatten(outputs) mask_already_computed = getattr( self, "_compute_output_and_mask_jointly", False ) or all( getattr(x, "_keras_mask", None) is not None for x in flat_outputs ) # Only compute the mask if the Layer explicitly supports masking or has # overridden `compute_mask`. should_compute_mask = hasattr(self, "compute_mask") and ( self.supports_masking or not getattr(self.compute_mask, "_is_default", False) ) if mask_already_computed: flat_masks = [getattr(x, "_keras_mask", None) for x in flat_outputs] elif not should_compute_mask: flat_masks = [None for _ in flat_outputs] else: output_masks = self.compute_mask(inputs, previous_mask) # `compute_mask` can return a single `None` even when a Layer # has multiple outputs. if output_masks is None: flat_masks = [None for _ in flat_outputs] else: flat_masks = tf.nest.flatten(output_masks) for output, mask in zip(flat_outputs, flat_masks): try: output._keras_mask = mask except AttributeError: # C Type such as np.ndarray. pass if tf_utils.are_all_symbolic_tensors(flat_outputs): for output in flat_outputs: if getattr(output, "_keras_mask", None) is not None: # Do not track masks for `TensorFlowOpLayer` construction. output._keras_mask._keras_history_checked = True def _collect_input_masks(self, inputs, args, kwargs): """Checks if mask argument was passed, else gathers mask from inputs.""" if self._call_spec.arg_was_passed("mask", args, kwargs): return self._call_spec.get_arg_value("mask", args, kwargs) if not self._should_compute_mask: return None input_masks = tf.nest.map_structure( lambda t: getattr(t, "_keras_mask", None), inputs ) if generic_utils.is_all_none(input_masks): return None return input_masks def _get_node_attribute_at_index(self, node_index, attr, attr_name): """Private utility to retrieves an attribute (e.g. inputs) from a node. This is used to implement the methods: - get_input_shape_at - get_output_shape_at - get_input_at etc... Args: node_index: Integer index of the node from which to retrieve the attribute. attr: Exact node attribute name. attr_name: Human-readable attribute name, for error messages. Returns: The layer's attribute `attr` at the node of index `node_index`. Raises: RuntimeError: If the layer has no inbound nodes, or if called in Eager mode. ValueError: If the index provided does not match any node. """ if not self._inbound_nodes: raise RuntimeError( "The layer has never been called and thus has no defined " + attr_name + "." ) if not len(self._inbound_nodes) > node_index: raise ValueError( "Asked to get " + attr_name + " at node " + str(node_index) + ", but the layer has only " + str(len(self._inbound_nodes)) + " inbound nodes." ) values = getattr(self._inbound_nodes[node_index], attr) if isinstance(values, list) and len(values) == 1: return values[0] else: return values def _maybe_build(self, inputs): # Check input assumptions set before layer building, e.g. input rank. if not self.built: input_spec.assert_input_compatibility( self.input_spec, inputs, self.name ) input_list = tf.nest.flatten(inputs) if input_list and self._dtype_policy.compute_dtype is None: try: dtype = input_list[0].dtype.base_dtype.name except AttributeError: pass else: self._set_dtype_policy(policy.Policy(dtype)) input_shapes = None if all(hasattr(x, "shape") for x in input_list): input_shapes = tf.nest.map_structure(lambda x: x.shape, inputs) # Only call `build` if the user has manually overridden the build # method. if not hasattr(self.build, "_is_default"): # Any setup work performed only once should happen in an # `init_scope` to avoid creating symbolic Tensors that will # later pollute any eager operations. with tf_utils.maybe_init_scope(self): self.build(input_shapes) # We must set also ensure that the layer is marked as built, and the # build shape is stored since user defined build functions may not # be calling `super.build()` Layer.build(self, input_shapes) # Optionally load weight values specified at layer instantiation. if self._initial_weights is not None: self.set_weights(self._initial_weights) self._initial_weights = None def _symbolic_call(self, inputs): input_shapes = tf.nest.map_structure(lambda x: x.shape, inputs) output_shapes = self.compute_output_shape(input_shapes) def _make_placeholder_like(shape): ph = backend.placeholder(shape=shape, dtype=self.dtype) ph._keras_mask = None return ph return tf.nest.map_structure(_make_placeholder_like, output_shapes) def _get_trainable_state(self): """Get the `trainable` state of each sublayer. Returns: A dict mapping all sublayers to their `trainable` value. """ layers = self._flatten_layers(include_self=False, recursive=False) trainable_state = {self: self.trainable} for l in layers: trainable_state.update(l._get_trainable_state()) return trainable_state def _set_trainable_state(self, trainable_state): """Set `trainable` state for each sublayer.""" if self in trainable_state: self.trainable = trainable_state[self] layers = self._flatten_layers(include_self=False, recursive=False) for l in layers: if l in trainable_state: l._set_trainable_state(trainable_state) @property def _obj_reference_counts(self): """A dict counting the number of attributes referencing an object.""" self._maybe_create_attribute( "_obj_reference_counts_dict", object_identity.ObjectIdentityDictionary(), ) return self._obj_reference_counts_dict @tf.__internal__.tracking.no_automatic_dependency_tracking def _maybe_create_attribute(self, name, default_value): """Create attribute (with the default value) if it hasn't been created. This is useful for fields that is used for tracking purpose, _trainable_weights, or _layers. Note that user could create a layer subclass and assign an internal field before invoking the Layer.__init__(), the __setattr__() need to create the tracking fields and __init__() need to not override them. Args: name: String, the name of the attribute. default_value: Object, the default value of the attribute. """ if not hasattr(self, name): self.__setattr__(name, default_value) def __delattr__(self, name): # For any super.__delattr__() call, we will directly use the # implementation in Trackable and skip the behavior in AutoTrackable. # The Layer was originally use Trackable as base class, the change of # using Module as base class forced us to have AutoTrackable in the # class hierarchy. # # TODO(b/180760306) Keeping the status quo of skipping _delattr__ and # __setattr__ in AutoTrackable may be unsustainable. existing_value = getattr(self, name, None) # If this value is replacing an existing object assigned to an # attribute, we should clean it out to avoid leaking memory. First we # check if there are other attributes referencing it. reference_counts = self._obj_reference_counts if existing_value not in reference_counts: super(tf.__internal__.tracking.AutoTrackable, self).__delattr__( name ) return reference_count = reference_counts[existing_value] if reference_count > 1: # There are other remaining references. We can't remove this object # from _layers etc. reference_counts[existing_value] = reference_count - 1 super(tf.__internal__.tracking.AutoTrackable, self).__delattr__( name ) return else: # This is the last remaining reference. del reference_counts[existing_value] super(tf.__internal__.tracking.AutoTrackable, self).__delattr__(name) if isinstance(existing_value, Layer) or base_layer_utils.has_weights( existing_value ): super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( "_self_tracked_trackables", [ l for l in self._self_tracked_trackables if l is not existing_value ], ) if isinstance(existing_value, tf.Variable): super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( "_trainable_weights", [w for w in self._trainable_weights if w is not existing_value], ) super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( "_non_trainable_weights", [ w for w in self._non_trainable_weights if w is not existing_value ], ) def __setattr__(self, name, value): if ( name == "_self_setattr_tracking" or not getattr(self, "_self_setattr_tracking", True) # Exclude @property.setters from tracking or hasattr(self.__class__, name) ): try: super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( name, value ) except AttributeError: raise AttributeError( ( 'Can\'t set the attribute "{}", likely because it ' "conflicts with an existing read-only @property of the " "object. Please choose a different name." ).format(name) ) return # Keep track of trackable objects, for the needs of # `Network.save_weights`. value = tf.__internal__.tracking.sticky_attribute_assignment( trackable=self, value=value, name=name ) reference_counts = self._obj_reference_counts reference_counts[value] = reference_counts.get(value, 0) + 1 # Clean out the old attribute, which clears _layers and # _trainable_weights if necessary. try: self.__delattr__(name) except AttributeError: pass # Keep track of metric instance created in subclassed layer. from keras import metrics as metrics_module for val in tf.nest.flatten(value): if isinstance(val, metrics_module.Metric) and hasattr( self, "_metrics" ): self._metrics.append(val) # TODO(scottzhu): Need to track Module object as well for weight # tracking. Be careful about metric if it becomes a Module in future. # Append value to self._layers if relevant if getattr(self, "_auto_track_sub_layers", True) and ( isinstance(value, Layer) or base_layer_utils.has_weights(value) ): self._maybe_create_attribute("_self_tracked_trackables", []) # We need to check object identity to avoid de-duplicating empty # container types which compare equal. if not any( (layer is value for layer in self._self_tracked_trackables) ): self._self_tracked_trackables.append(value) if hasattr(value, "_use_resource_variables"): # Legacy layers (V1 tf.layers) must always use # resource variables. value._use_resource_variables = True # Append value to list of trainable / non-trainable weights if relevant # TODO(b/125122625): This won't pick up on any variables added to a # list/dict after creation. for val in tf.nest.flatten(value): if not isinstance(val, tf.Variable): continue # Users may add extra weights/variables simply by assigning them to # attributes (invalid for graph networks) self._maybe_create_attribute("_trainable_weights", []) self._maybe_create_attribute("_non_trainable_weights", []) if val.trainable: if any(val is w for w in self._trainable_weights): continue self._trainable_weights.append(val) else: if any(val is w for w in self._non_trainable_weights): continue self._non_trainable_weights.append(val) backend.track_variable(val) # TODO(b/180760306) Skip the auto trackable from tf.Module to keep # status quo. See the comment at __delattr__. super(tf.__internal__.tracking.AutoTrackable, self).__setattr__( name, value ) # This is a hack so that the is_layer (within # training/trackable/layer_utils.py) check doesn't get the weights attr. # TODO(b/110718070): Remove when fixed. def _is_layer(self): return True @property @layer_utils.cached_per_instance def _should_compute_mask(self): return ( "mask" in self._call_spec.arg_names or getattr(self, "compute_mask", None) is not None ) def _dedup_weights(self, weights): """Dedupe weights while maintaining order as much as possible.""" output, seen_ids = [], set() for w in weights: if id(w) not in seen_ids: output.append(w) # Track the Variable's identity to avoid __eq__ issues. seen_ids.add(id(w)) return output # SavedModel properties. Please see keras/saving/saved_model for details. @property def _trackable_saved_model_saver(self): return layer_serialization.LayerSavedModelSaver(self) @property def _object_identifier(self): return self._trackable_saved_model_saver.object_identifier @property def _tracking_metadata(self): return self._trackable_saved_model_saver.tracking_metadata def _trackable_children(self, save_type="checkpoint", **kwargs): if save_type == "savedmodel": cache = kwargs["cache"] # TODO(b/213628533): This must be called before super() to ensure # that any input shape changes are applied before getting the config # of the model. children = self._trackable_saved_model_saver.trackable_children( cache ) else: children = {} children.update(super()._trackable_children(save_type, **kwargs)) return children def __getstate__(self): # Override to support `copy.deepcopy` and pickling. # Thread-local objects cannot be copied in Python 3, so pop these. # Thread-local objects are used to cache losses in MirroredStrategy, and # so shouldn't be copied. state = self.__dict__.copy() state.pop("_thread_local", None) return state def __setstate__(self, state): state["_thread_local"] = threading.local() # Bypass Trackable logic as `__dict__` already contains this info. object.__setattr__(self, "__dict__", state)