# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras 1D convolution layer.""" from keras import activations from keras import constraints from keras import initializers from keras import regularizers from keras.dtensor import utils from keras.layers.convolutional.base_conv import Conv # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Conv1D", "keras.layers.Convolution1D") class Conv1D(Conv): """1D convolution layer (e.g. temporal convolution). This layer creates a convolution kernel that is convolved with the layer input over a single spatial (or temporal) dimension to produce a tensor of outputs. If `use_bias` is True, a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. When using this layer as the first layer in a model, provide an `input_shape` argument (tuple of integers or `None`, e.g. `(10, 128)` for sequences of 10 vectors of 128-dimensional vectors, or `(None, 128)` for variable-length sequences of 128-dimensional vectors. Examples: >>> # The inputs are 128-length vectors with 10 timesteps, and the >>> # batch size is 4. >>> input_shape = (4, 10, 128) >>> x = tf.random.normal(input_shape) >>> y = tf.keras.layers.Conv1D( ... 32, 3, activation='relu',input_shape=input_shape[1:])(x) >>> print(y.shape) (4, 8, 32) >>> # With extended batch shape [4, 7] (e.g. weather data where batch >>> # dimensions correspond to spatial location and the third dimension >>> # corresponds to time.) >>> input_shape = (4, 7, 10, 128) >>> x = tf.random.normal(input_shape) >>> y = tf.keras.layers.Conv1D( ... 32, 3, activation='relu', input_shape=input_shape[2:])(x) >>> print(y.shape) (4, 7, 8, 32) Args: filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). kernel_size: An integer or tuple/list of a single integer, specifying the length of the 1D convolution window. strides: An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"`, `"same"` or `"causal"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding with zeros evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. `"causal"` results in causal (dilated) convolutions, e.g. `output[t]` does not depend on `input[t+1:]`. Useful when modeling temporal data where the model should not violate the temporal order. See [WaveNet: A Generative Model for Raw Audio, section 2.1](https://arxiv.org/abs/1609.03499). data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch_size, width, channels)` while `channels_first` corresponds to inputs with shape `(batch_size, channels, width)`. Note that the `channels_first` format is currently not supported by TensorFlow on CPU. dilation_rate: an integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. groups: A positive integer specifying the number of groups in which the input is split along the channel axis. Each group is convolved separately with `filters / groups` filters. The output is the concatenation of all the `groups` results along the channel axis. Input channels and `filters` must both be divisible by `groups`. activation: Activation function to use. If you don't specify anything, no activation is applied (see `keras.activations`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix (see `keras.initializers`). Defaults to 'glorot_uniform'. bias_initializer: Initializer for the bias vector (see `keras.initializers`). Defaults to 'zeros'. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see `keras.regularizers`). bias_regularizer: Regularizer function applied to the bias vector (see `keras.regularizers`). activity_regularizer: Regularizer function applied to the output of the layer (its "activation") (see `keras.regularizers`). kernel_constraint: Constraint function applied to the kernel matrix (see `keras.constraints`). bias_constraint: Constraint function applied to the bias vector (see `keras.constraints`). Input shape: 3+D tensor with shape: `batch_shape + (steps, input_dim)` Output shape: 3+D tensor with shape: `batch_shape + (new_steps, filters)` `steps` value might have changed due to padding or strides. Returns: A tensor of rank 3 representing `activation(conv1d(inputs, kernel) + bias)`. Raises: ValueError: when both `strides > 1` and `dilation_rate > 1`. """ @utils.allow_initializer_layout def __init__( self, filters, kernel_size, strides=1, padding="valid", data_format="channels_last", dilation_rate=1, groups=1, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs ): super().__init__( rank=1, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, groups=groups, activation=activations.get(activation), use_bias=use_bias, kernel_initializer=initializers.get(kernel_initializer), bias_initializer=initializers.get(bias_initializer), kernel_regularizer=regularizers.get(kernel_regularizer), bias_regularizer=regularizers.get(bias_regularizer), activity_regularizer=regularizers.get(activity_regularizer), kernel_constraint=constraints.get(kernel_constraint), bias_constraint=constraints.get(bias_constraint), **kwargs ) # Alias Convolution1D = Conv1D