# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Legacy module implementing RNN Cells. This module provides a number of basic commonly used RNN cells, such as LSTM (Long Short Term Memory) or GRU (Gated Recurrent Unit), and a number of operators that allow adding dropouts, projections, or embeddings for inputs. Constructing multi-layer cells is supported by the class `MultiRNNCell`, or by calling the `rnn` ops several times. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import warnings import tensorflow.compat.v2 as tf from keras import activations from keras import backend from keras import initializers from keras.engine import base_layer_utils from keras.engine import input_spec from keras.legacy_tf_layers import base as base_layer from keras.utils import tf_utils # isort: off from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import keras_export from tensorflow.python.util.tf_export import tf_export _BIAS_VARIABLE_NAME = "bias" _WEIGHTS_VARIABLE_NAME = "kernel" def _hasattr(obj, attr_name): try: getattr(obj, attr_name) except AttributeError: return False else: return True def _concat(prefix, suffix, static=False): """Concat that enables int, Tensor, or TensorShape values. This function takes a size specification, which can be an integer, a TensorShape, or a Tensor, and converts it into a concatenated Tensor (if static = False) or a list of integers (if static = True). Args: prefix: The prefix; usually the batch size (and/or time step size). (TensorShape, int, or Tensor.) suffix: TensorShape, int, or Tensor. static: If `True`, return a python list with possibly unknown dimensions. Otherwise return a `Tensor`. Returns: shape: the concatenation of prefix and suffix. Raises: ValueError: if `suffix` is not a scalar or vector (or TensorShape). ValueError: if prefix or suffix was `None` and asked for dynamic Tensors out. """ if isinstance(prefix, tf.Tensor): p = prefix p_static = tf.get_static_value(prefix) if p.shape.ndims == 0: p = tf.compat.v1.expand_dims(p, 0) elif p.shape.ndims != 1: raise ValueError( "Prefix tensor must be either a scalar or vector, " f"but received tensor: {p}" ) else: p = tf.TensorShape(prefix) p_static = p.as_list() if p.ndims is not None else None p = ( tf.constant(p.as_list(), dtype=tf.int32) if p.is_fully_defined() else None ) if isinstance(suffix, tf.Tensor): s = suffix s_static = tf.get_static_value(suffix) if s.shape.ndims == 0: s = tf.compat.v1.expand_dims(s, 0) elif s.shape.ndims != 1: raise ValueError( "suffix tensor must be either a scalar or vector, " f"but received tensor: {s}" ) else: s = tf.TensorShape(suffix) s_static = s.as_list() if s.ndims is not None else None s = ( tf.constant(s.as_list(), dtype=tf.int32) if s.is_fully_defined() else None ) if static: shape = tf.TensorShape(p_static).concatenate(s_static) shape = shape.as_list() if shape.ndims is not None else None else: if p is None or s is None: raise ValueError( "Prefix or suffix can't be None. " f"Received prefix = {prefix} and suffix = {suffix}" ) shape = tf.concat((p, s), 0) return shape def _zero_state_tensors(state_size, batch_size, dtype): """Create tensors of zeros based on state_size, batch_size, and dtype.""" def get_state_shape(s): """Combine s with batch_size to get a proper tensor shape.""" c = _concat(batch_size, s) size = tf.zeros(c, dtype=dtype) if not tf.executing_eagerly(): c_static = _concat(batch_size, s, static=True) size.set_shape(c_static) return size return tf.nest.map_structure(get_state_shape, state_size) @keras_export(v1=["keras.__internal__.legacy.rnn_cell.RNNCell"]) @tf_export(v1=["nn.rnn_cell.RNNCell"]) class RNNCell(base_layer.Layer): """Abstract object representing an RNN cell. Every `RNNCell` must have the properties below and implement `call` with the signature `(output, next_state) = call(input, state)`. The optional third input argument, `scope`, is allowed for backwards compatibility purposes; but should be left off for new subclasses. This definition of cell differs from the definition used in the literature. In the literature, 'cell' refers to an object with a single scalar output. This definition refers to a horizontal array of such units. An RNN cell, in the most abstract setting, is anything that has a state and performs some operation that takes a matrix of inputs. This operation results in an output matrix with `self.output_size` columns. If `self.state_size` is an integer, this operation also results in a new state matrix with `self.state_size` columns. If `self.state_size` is a (possibly nested tuple of) TensorShape object(s), then it should return a matching structure of Tensors having shape `[batch_size].concatenate(s)` for each `s` in `self.batch_size`. """ def __init__(self, trainable=True, name=None, dtype=None, **kwargs): super().__init__(trainable=trainable, name=name, dtype=dtype, **kwargs) # Attribute that indicates whether the cell is a TF RNN cell, due the # slight difference between TF and Keras RNN cell. Notably the state is # not wrapped in a list for TF cell where they are single tensor state, # whereas keras cell will wrap the state into a list, and call() will # have to unwrap them. self._is_tf_rnn_cell = True def __call__(self, inputs, state, scope=None): """Run this RNN cell on inputs, starting from the given state. Args: inputs: `2-D` tensor with shape `[batch_size, input_size]`. state: if `self.state_size` is an integer, this should be a `2-D Tensor` with shape `[batch_size, self.state_size]`. Otherwise, if `self.state_size` is a tuple of integers, this should be a tuple with shapes `[batch_size, s] for s in self.state_size`. scope: VariableScope for the created subgraph; defaults to class name. Returns: A pair containing: - Output: A `2-D` tensor with shape `[batch_size, self.output_size]`. - New state: Either a single `2-D` tensor, or a tuple of tensors matching the arity and shapes of `state`. """ if scope is not None: with tf.compat.v1.variable_scope( scope, custom_getter=self._rnn_get_variable ) as scope: return super().__call__(inputs, state, scope=scope) else: scope_attrname = "rnncell_scope" scope = getattr(self, scope_attrname, None) if scope is None: scope = tf.compat.v1.variable_scope( tf.compat.v1.get_variable_scope(), custom_getter=self._rnn_get_variable, ) setattr(self, scope_attrname, scope) with scope: return super().__call__(inputs, state) def _rnn_get_variable(self, getter, *args, **kwargs): variable = getter(*args, **kwargs) if tf.compat.v1.executing_eagerly_outside_functions(): trainable = variable.trainable else: trainable = variable in tf.compat.v1.trainable_variables() or ( base_layer_utils.is_split_variable(variable) and list(variable)[0] in tf.compat.v1.trainable_variables() ) if trainable and all( variable is not v for v in self._trainable_weights ): self._trainable_weights.append(variable) elif not trainable and all( variable is not v for v in self._non_trainable_weights ): self._non_trainable_weights.append(variable) return variable @property def state_size(self): """size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes. """ raise NotImplementedError("Abstract method") @property def output_size(self): """Integer or TensorShape: size of outputs produced by this cell.""" raise NotImplementedError("Abstract method") def build(self, _): # This tells the parent Layer object that it's OK to call # self.add_weight() inside the call() method. pass def get_initial_state(self, inputs=None, batch_size=None, dtype=None): if inputs is not None: # Validate the given batch_size and dtype against inputs if # provided. inputs = tf.convert_to_tensor(inputs, name="inputs") if batch_size is not None: if tf.is_tensor(batch_size): static_batch_size = tf.get_static_value( batch_size, partial=True ) else: static_batch_size = batch_size if inputs.shape.dims[0].value != static_batch_size: raise ValueError( "batch size from input tensor is different from the " "input param. Input tensor batch: " f"{inputs.shape.dims[0].value}, " f"batch_size: {batch_size}" ) if dtype is not None and inputs.dtype != dtype: raise ValueError( "dtype from input tensor is different from the " f"input param. Input tensor dtype: {inputs.dtype}, " f"dtype: {dtype}" ) batch_size = ( inputs.shape.dims[0].value or tf.compat.v1.shape(inputs)[0] ) dtype = inputs.dtype if batch_size is None or dtype is None: raise ValueError( "batch_size and dtype cannot be None while constructing " f"initial state: batch_size={batch_size}, dtype={dtype}" ) return self.zero_state(batch_size, dtype) def zero_state(self, batch_size, dtype): """Return zero-filled state tensor(s). Args: batch_size: int, float, or unit Tensor representing the batch size. dtype: the data type to use for the state. Returns: If `state_size` is an int or TensorShape, then the return value is a `N-D` tensor of shape `[batch_size, state_size]` filled with zeros. If `state_size` is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of `2-D` tensors with the shapes `[batch_size, s]` for each s in `state_size`. """ # Try to use the last cached zero_state. This is done to avoid # recreating zeros, especially when eager execution is enabled. state_size = self.state_size is_eager = tf.executing_eagerly() if is_eager and _hasattr(self, "_last_zero_state"): ( last_state_size, last_batch_size, last_dtype, last_output, ) = getattr(self, "_last_zero_state") if ( last_batch_size == batch_size and last_dtype == dtype and last_state_size == state_size ): return last_output with backend.name_scope(type(self).__name__ + "ZeroState"): output = _zero_state_tensors(state_size, batch_size, dtype) if is_eager: self._last_zero_state = (state_size, batch_size, dtype, output) return output def get_config(self): return super().get_config() @property def _use_input_spec_as_call_signature(self): # We do not store the shape information for the state argument in the # call function for legacy RNN cells, so do not generate an input # signature. return False class LayerRNNCell(RNNCell): """Subclass of RNNCells that act like proper `tf.Layer` objects. For backwards compatibility purposes, most `RNNCell` instances allow their `call` methods to instantiate variables via `tf.compat.v1.get_variable`. The underlying variable scope thus keeps track of any variables, and returning cached versions. This is atypical of `tf.layer` objects, which separate this part of layer building into a `build` method that is only called once. Here we provide a subclass for `RNNCell` objects that act exactly as `Layer` objects do. They must provide a `build` method and their `call` methods do not access Variables `tf.compat.v1.get_variable`. """ def __call__(self, inputs, state, scope=None, *args, **kwargs): """Run this RNN cell on inputs, starting from the given state. Args: inputs: `2-D` tensor with shape `[batch_size, input_size]`. state: if `self.state_size` is an integer, this should be a `2-D Tensor` with shape `[batch_size, self.state_size]`. Otherwise, if `self.state_size` is a tuple of integers, this should be a tuple with shapes `[batch_size, s] for s in self.state_size`. scope: optional cell scope. *args: Additional positional arguments. **kwargs: Additional keyword arguments. Returns: A pair containing: - Output: A `2-D` tensor with shape `[batch_size, self.output_size]`. - New state: Either a single `2-D` tensor, or a tuple of tensors matching the arity and shapes of `state`. """ # Bypass RNNCell's variable capturing semantics for LayerRNNCell. # Instead, it is up to subclasses to provide a proper build # method. See the class docstring for more details. return base_layer.Layer.__call__( self, inputs, state, scope=scope, *args, **kwargs ) @keras_export(v1=["keras.__internal__.legacy.rnn_cell.BasicRNNCell"]) @tf_export(v1=["nn.rnn_cell.BasicRNNCell"]) class BasicRNNCell(LayerRNNCell): """The most basic RNN cell. Note that this cell is not optimized for performance. Args: num_units: int, The number of units in the RNN cell. activation: Nonlinearity to use. Default: `tanh`. It could also be string that is within Keras activation function names. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. **kwargs: Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). """ def __init__( self, num_units, activation=None, reuse=None, name=None, dtype=None, **kwargs, ): warnings.warn( "`tf.nn.rnn_cell.BasicRNNCell` is deprecated and will be " "removed in a future version. This class " "is equivalent as `tf.keras.layers.SimpleRNNCell`, " "and will be replaced by that in Tensorflow 2.0.", stacklevel=2, ) super().__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) _check_supported_dtypes(self.dtype) if tf.executing_eagerly() and tf.config.list_logical_devices("GPU"): logging.warning( "%s: Note that this cell is not optimized for performance.", self, ) # Inputs must be 2-dimensional. self.input_spec = input_spec.InputSpec(ndim=2) self._num_units = num_units if activation: self._activation = activations.get(activation) else: self._activation = tf.tanh @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units @tf_utils.shape_type_conversion def build(self, inputs_shape): if inputs_shape[-1] is None: raise ValueError( "Expected inputs.shape[-1] to be known, " f"received shape: {inputs_shape}" ) _check_supported_dtypes(self.dtype) input_depth = inputs_shape[-1] self._kernel = self.add_weight( _WEIGHTS_VARIABLE_NAME, shape=[input_depth + self._num_units, self._num_units], ) self._bias = self.add_weight( _BIAS_VARIABLE_NAME, shape=[self._num_units], initializer=tf.compat.v1.zeros_initializer(dtype=self.dtype), ) self.built = True def call(self, inputs, state): """Most basic RNN: output = new_state = act(W * input + U * state + B).""" _check_rnn_cell_input_dtypes([inputs, state]) gate_inputs = tf.matmul(tf.concat([inputs, state], 1), self._kernel) gate_inputs = tf.nn.bias_add(gate_inputs, self._bias) output = self._activation(gate_inputs) return output, output def get_config(self): config = { "num_units": self._num_units, "activation": activations.serialize(self._activation), "reuse": self._reuse, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export(v1=["keras.__internal__.legacy.rnn_cell.GRUCell"]) @tf_export(v1=["nn.rnn_cell.GRUCell"]) class GRUCell(LayerRNNCell): """Gated Recurrent Unit cell. Note that this cell is not optimized for performance. Please use `tf.compat.v1.keras.layers.CuDNNGRU` for better performance on GPU, or `tf.raw_ops.GRUBlockCell` for better performance on CPU. Args: num_units: int, The number of units in the GRU cell. activation: Nonlinearity to use. Default: `tanh`. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. kernel_initializer: (optional) The initializer to use for the weight and projection matrices. bias_initializer: (optional) The initializer to use for the bias. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. **kwargs: Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). References: Learning Phrase Representations using RNN Encoder Decoder for Statistical Machine Translation: [Cho et al., 2014] (https://aclanthology.coli.uni-saarland.de/papers/D14-1179/d14-1179) ([pdf](http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf)) """ def __init__( self, num_units, activation=None, reuse=None, kernel_initializer=None, bias_initializer=None, name=None, dtype=None, **kwargs, ): warnings.warn( "`tf.nn.rnn_cell.GRUCell` is deprecated and will be removed " "in a future version. This class " "is equivalent as `tf.keras.layers.GRUCell`, " "and will be replaced by that in Tensorflow 2.0.", stacklevel=2, ) super().__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) _check_supported_dtypes(self.dtype) if tf.executing_eagerly() and tf.config.list_logical_devices("GPU"): logging.warning( "%s: Note that this cell is not optimized for performance. " "Please use tf.compat.v1.keras.layers.CuDNNGRU for better " "performance on GPU.", self, ) # Inputs must be 2-dimensional. self.input_spec = input_spec.InputSpec(ndim=2) self._num_units = num_units if activation: self._activation = activations.get(activation) else: self._activation = tf.tanh self._kernel_initializer = initializers.get(kernel_initializer) self._bias_initializer = initializers.get(bias_initializer) @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units @tf_utils.shape_type_conversion def build(self, inputs_shape): if inputs_shape[-1] is None: raise ValueError( "Expected inputs.shape[-1] to be known, " f"received shape: {inputs_shape}" ) _check_supported_dtypes(self.dtype) input_depth = inputs_shape[-1] self._gate_kernel = self.add_weight( f"gates/{_WEIGHTS_VARIABLE_NAME}", shape=[input_depth + self._num_units, 2 * self._num_units], initializer=self._kernel_initializer, ) self._gate_bias = self.add_weight( f"gates/{_BIAS_VARIABLE_NAME}", shape=[2 * self._num_units], initializer=( self._bias_initializer if self._bias_initializer is not None else tf.compat.v1.constant_initializer(1.0, dtype=self.dtype) ), ) self._candidate_kernel = self.add_weight( f"candidate/{_WEIGHTS_VARIABLE_NAME}", shape=[input_depth + self._num_units, self._num_units], initializer=self._kernel_initializer, ) self._candidate_bias = self.add_weight( f"candidate/{_BIAS_VARIABLE_NAME}", shape=[self._num_units], initializer=( self._bias_initializer if self._bias_initializer is not None else tf.compat.v1.zeros_initializer(dtype=self.dtype) ), ) self.built = True def call(self, inputs, state): """Gated recurrent unit (GRU) with nunits cells.""" _check_rnn_cell_input_dtypes([inputs, state]) gate_inputs = tf.matmul( tf.concat([inputs, state], 1), self._gate_kernel ) gate_inputs = tf.nn.bias_add(gate_inputs, self._gate_bias) value = tf.sigmoid(gate_inputs) r, u = tf.split(value=value, num_or_size_splits=2, axis=1) r_state = r * state candidate = tf.matmul( tf.concat([inputs, r_state], 1), self._candidate_kernel ) candidate = tf.nn.bias_add(candidate, self._candidate_bias) c = self._activation(candidate) new_h = u * state + (1 - u) * c return new_h, new_h def get_config(self): config = { "num_units": self._num_units, "kernel_initializer": initializers.serialize( self._kernel_initializer ), "bias_initializer": initializers.serialize(self._bias_initializer), "activation": activations.serialize(self._activation), "reuse": self._reuse, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) _LSTMStateTuple = collections.namedtuple("LSTMStateTuple", ("c", "h")) @keras_export(v1=["keras.__internal__.legacy.rnn_cell.LSTMStateTuple"]) @tf_export(v1=["nn.rnn_cell.LSTMStateTuple"]) class LSTMStateTuple(_LSTMStateTuple): """Tuple used by LSTM Cells for `state_size`, `zero_state`, & output state. Stores two elements: `(c, h)`, in that order. Where `c` is the hidden state and `h` is the output. Only used when `state_is_tuple=True`. """ __slots__ = () @property def dtype(self): (c, h) = self if c.dtype != h.dtype: raise TypeError( "Inconsistent dtypes for internal state: " f"{c.dtype} vs {h.dtype}" ) return c.dtype @keras_export(v1=["keras.__internal__.legacy.rnn_cell.BasicLSTMCell"]) @tf_export(v1=["nn.rnn_cell.BasicLSTMCell"]) class BasicLSTMCell(LayerRNNCell): """DEPRECATED: Please use `tf.compat.v1.nn.rnn_cell.LSTMCell` instead. Basic LSTM recurrent network cell. The implementation is based on We add forget_bias (default: 1) to the biases of the forget gate in order to reduce the scale of forgetting in the beginning of the training. It does not allow cell clipping, a projection layer, and does not use peep-hole connections: it is the basic baseline. For advanced models, please use the full `tf.compat.v1.nn.rnn_cell.LSTMCell` that follows. Note that this cell is not optimized for performance. Please use `tf.compat.v1.keras.layers.CuDNNLSTM` for better performance on GPU, or `tf.raw_ops.LSTMBlockCell` for better performance on CPU. """ def __init__( self, num_units, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None, name=None, dtype=None, **kwargs, ): """Initialize the basic LSTM cell. Args: num_units: int, The number of units in the LSTM cell. forget_bias: float, The bias added to forget gates (see above). Must set to `0.0` manually when restoring from CudnnLSTM-trained checkpoints. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. The latter behavior will soon be deprecated. activation: Activation function of the inner states. Default: `tanh`. It could also be string that is within Keras activation function names. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. **kwargs: Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). When restoring from CudnnLSTM-trained checkpoints, must use `CudnnCompatibleLSTMCell` instead. """ warnings.warn( "`tf.nn.rnn_cell.BasicLSTMCell` is deprecated and will be " "removed in a future version. This class " "is equivalent as `tf.keras.layers.LSTMCell`, " "and will be replaced by that in Tensorflow 2.0.", stacklevel=2, ) super().__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) _check_supported_dtypes(self.dtype) if not state_is_tuple: logging.warning( "%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self, ) if tf.executing_eagerly() and tf.config.list_logical_devices("GPU"): logging.warning( "%s: Note that this cell is not optimized for performance. " "Please use tf.compat.v1.keras.layers.CuDNNLSTM for better " "performance on GPU.", self, ) # Inputs must be 2-dimensional. self.input_spec = input_spec.InputSpec(ndim=2) self._num_units = num_units self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple if activation: self._activation = activations.get(activation) else: self._activation = tf.tanh @property def state_size(self): return ( LSTMStateTuple(self._num_units, self._num_units) if self._state_is_tuple else 2 * self._num_units ) @property def output_size(self): return self._num_units @tf_utils.shape_type_conversion def build(self, inputs_shape): if inputs_shape[-1] is None: raise ValueError( "Expected inputs.shape[-1] to be known, " f"received shape: {inputs_shape}" ) _check_supported_dtypes(self.dtype) input_depth = inputs_shape[-1] h_depth = self._num_units self._kernel = self.add_weight( _WEIGHTS_VARIABLE_NAME, shape=[input_depth + h_depth, 4 * self._num_units], ) self._bias = self.add_weight( _BIAS_VARIABLE_NAME, shape=[4 * self._num_units], initializer=tf.compat.v1.zeros_initializer(dtype=self.dtype), ) self.built = True def call(self, inputs, state): """Long short-term memory cell (LSTM). Args: inputs: `2-D` tensor with shape `[batch_size, input_size]`. state: An `LSTMStateTuple` of state tensors, each shaped `[batch_size, num_units]`, if `state_is_tuple` has been set to `True`. Otherwise, a `Tensor` shaped `[batch_size, 2 * num_units]`. Returns: A pair containing the new hidden state, and the new state (either a `LSTMStateTuple` or a concatenated state, depending on `state_is_tuple`). """ _check_rnn_cell_input_dtypes([inputs, state]) sigmoid = tf.sigmoid one = tf.constant(1, dtype=tf.int32) # Parameters of gates are concatenated into one multiply for efficiency. if self._state_is_tuple: c, h = state else: c, h = tf.split(value=state, num_or_size_splits=2, axis=one) gate_inputs = tf.matmul(tf.concat([inputs, h], 1), self._kernel) gate_inputs = tf.nn.bias_add(gate_inputs, self._bias) # i = input_gate, j = new_input, f = forget_gate, o = output_gate i, j, f, o = tf.split(value=gate_inputs, num_or_size_splits=4, axis=one) forget_bias_tensor = tf.constant(self._forget_bias, dtype=f.dtype) # Note that using `add` and `multiply` instead of `+` and `*` gives a # performance improvement. So using those at the cost of readability. add = tf.add multiply = tf.multiply new_c = add( multiply(c, sigmoid(add(f, forget_bias_tensor))), multiply(sigmoid(i), self._activation(j)), ) new_h = multiply(self._activation(new_c), sigmoid(o)) if self._state_is_tuple: new_state = LSTMStateTuple(new_c, new_h) else: new_state = tf.concat([new_c, new_h], 1) return new_h, new_state def get_config(self): config = { "num_units": self._num_units, "forget_bias": self._forget_bias, "state_is_tuple": self._state_is_tuple, "activation": activations.serialize(self._activation), "reuse": self._reuse, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export(v1=["keras.__internal__.legacy.rnn_cell.LSTMCell"]) @tf_export(v1=["nn.rnn_cell.LSTMCell"]) class LSTMCell(LayerRNNCell): """Long short-term memory unit (LSTM) recurrent network cell. The default non-peephole implementation is based on (Gers et al., 1999). The peephole implementation is based on (Sak et al., 2014). The class uses optional peep-hole connections, optional cell clipping, and an optional projection layer. Note that this cell is not optimized for performance. Please use `tf.compat.v1.keras.layers.CuDNNLSTM` for better performance on GPU, or `tf.raw_ops.LSTMBlockCell` for better performance on CPU. References: Long short-term memory recurrent neural network architectures for large scale acoustic modeling: [Sak et al., 2014] (https://www.isca-speech.org/archive/interspeech_2014/i14_0338.html) ([pdf] (https://www.isca-speech.org/archive/archive_papers/interspeech_2014/i14_0338.pdf)) Learning to forget: [Gers et al., 1999] (http://digital-library.theiet.org/content/conferences/10.1049/cp_19991218) ([pdf](https://arxiv.org/pdf/1409.2329.pdf)) Long Short-Term Memory: [Hochreiter et al., 1997] (https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735) ([pdf](http://ml.jku.at/publications/older/3504.pdf)) """ def __init__( self, num_units, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip=None, num_unit_shards=None, num_proj_shards=None, forget_bias=1.0, state_is_tuple=True, activation=None, reuse=None, name=None, dtype=None, **kwargs, ): """Initialize the parameters for an LSTM cell. Args: num_units: int, The number of units in the LSTM cell. use_peepholes: bool, set True to enable diagonal/peephole connections. cell_clip: (optional) A float value, if provided the cell state is clipped by this value prior to the cell output activation. initializer: (optional) The initializer to use for the weight and projection matrices. num_proj: (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed. proj_clip: (optional) A float value. If `num_proj > 0` and `proj_clip` is provided, then the projected values are clipped elementwise to within `[-proj_clip, proj_clip]`. num_unit_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. num_proj_shards: Deprecated, will be removed by Jan. 2017. Use a variable_scope partitioner instead. forget_bias: Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training. Must set it manually to `0.0` when restoring from CudnnLSTM trained checkpoints. state_is_tuple: If True, accepted and returned states are 2-tuples of the `c_state` and `m_state`. If False, they are concatenated along the column axis. This latter behavior will soon be deprecated. activation: Activation function of the inner states. Default: `tanh`. It could also be string that is within Keras activation function names. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases. dtype: Default dtype of the layer (default of `None` means use the type of the first input). Required when `build` is called before `call`. **kwargs: Dict, keyword named properties for common layer attributes, like `trainable` etc when constructing the cell from configs of get_config(). When restoring from CudnnLSTM-trained checkpoints, use `CudnnCompatibleLSTMCell` instead. """ warnings.warn( "`tf.nn.rnn_cell.LSTMCell` is deprecated and will be " "removed in a future version. This class " "is equivalent as `tf.keras.layers.LSTMCell`, " "and will be replaced by that in Tensorflow 2.0.", stacklevel=2, ) super().__init__(_reuse=reuse, name=name, dtype=dtype, **kwargs) _check_supported_dtypes(self.dtype) if not state_is_tuple: logging.warning( "%s: Using a concatenated state is slower and will soon be " "deprecated. Use state_is_tuple=True.", self, ) if num_unit_shards is not None or num_proj_shards is not None: logging.warning( "%s: The num_unit_shards and proj_unit_shards parameters are " "deprecated and will be removed in Jan 2017. " "Use a variable scope with a partitioner instead.", self, ) if tf.executing_eagerly() and tf.config.list_logical_devices("GPU"): logging.warning( "%s: Note that this cell is not optimized for performance. " "Please use tf.compat.v1.keras.layers.CuDNNLSTM for better " "performance on GPU.", self, ) # Inputs must be 2-dimensional. self.input_spec = input_spec.InputSpec(ndim=2) self._num_units = num_units self._use_peepholes = use_peepholes self._cell_clip = cell_clip self._initializer = initializers.get(initializer) self._num_proj = num_proj self._proj_clip = proj_clip self._num_unit_shards = num_unit_shards self._num_proj_shards = num_proj_shards self._forget_bias = forget_bias self._state_is_tuple = state_is_tuple if activation: self._activation = activations.get(activation) else: self._activation = tf.tanh if num_proj: self._state_size = ( LSTMStateTuple(num_units, num_proj) if state_is_tuple else num_units + num_proj ) self._output_size = num_proj else: self._state_size = ( LSTMStateTuple(num_units, num_units) if state_is_tuple else 2 * num_units ) self._output_size = num_units @property def state_size(self): return self._state_size @property def output_size(self): return self._output_size @tf_utils.shape_type_conversion def build(self, inputs_shape): if inputs_shape[-1] is None: raise ValueError( "Expected inputs.shape[-1] to be known, " f"received shape: {inputs_shape}" ) _check_supported_dtypes(self.dtype) input_depth = inputs_shape[-1] h_depth = self._num_units if self._num_proj is None else self._num_proj maybe_partitioner = ( tf.compat.v1.fixed_size_partitioner(self._num_unit_shards) if self._num_unit_shards is not None else None ) self._kernel = self.add_weight( _WEIGHTS_VARIABLE_NAME, shape=[input_depth + h_depth, 4 * self._num_units], initializer=self._initializer, partitioner=maybe_partitioner, ) if self.dtype is None: initializer = tf.compat.v1.zeros_initializer else: initializer = tf.compat.v1.zeros_initializer(dtype=self.dtype) self._bias = self.add_weight( _BIAS_VARIABLE_NAME, shape=[4 * self._num_units], initializer=initializer, ) if self._use_peepholes: self._w_f_diag = self.add_weight( "w_f_diag", shape=[self._num_units], initializer=self._initializer, ) self._w_i_diag = self.add_weight( "w_i_diag", shape=[self._num_units], initializer=self._initializer, ) self._w_o_diag = self.add_weight( "w_o_diag", shape=[self._num_units], initializer=self._initializer, ) if self._num_proj is not None: maybe_proj_partitioner = ( tf.compat.v1.fixed_size_partitioner(self._num_proj_shards) if self._num_proj_shards is not None else None ) self._proj_kernel = self.add_weight( f"projection/{_WEIGHTS_VARIABLE_NAME}", shape=[self._num_units, self._num_proj], initializer=self._initializer, partitioner=maybe_proj_partitioner, ) self.built = True def call(self, inputs, state): """Run one step of LSTM. Args: inputs: input Tensor, must be 2-D, `[batch, input_size]`. state: if `state_is_tuple` is False, this must be a state Tensor, `2-D, [batch, state_size]`. If `state_is_tuple` is True, this must be a tuple of state Tensors, both `2-D`, with column sizes `c_state` and `m_state`. Returns: A tuple containing: - A `2-D, [batch, output_dim]`, Tensor representing the output of the LSTM after reading `inputs` when previous state was `state`. Here output_dim is: num_proj if num_proj was set, num_units otherwise. - Tensor(s) representing the new state of LSTM after reading `inputs` when the previous state was `state`. Same type and shape(s) as `state`. Raises: ValueError: If input size cannot be inferred from inputs via static shape inference. """ _check_rnn_cell_input_dtypes([inputs, state]) num_proj = self._num_units if self._num_proj is None else self._num_proj sigmoid = tf.sigmoid if self._state_is_tuple: (c_prev, m_prev) = state else: c_prev = tf.slice(state, [0, 0], [-1, self._num_units]) m_prev = tf.slice(state, [0, self._num_units], [-1, num_proj]) input_size = inputs.get_shape().with_rank(2).dims[1].value if input_size is None: raise ValueError( "Could not infer input size from inputs.get_shape()[-1]." f"Received input shape: {inputs.get_shape()}" ) # i = input_gate, j = new_input, f = forget_gate, o = output_gate lstm_matrix = tf.matmul(tf.concat([inputs, m_prev], 1), self._kernel) lstm_matrix = tf.nn.bias_add(lstm_matrix, self._bias) i, j, f, o = tf.split(value=lstm_matrix, num_or_size_splits=4, axis=1) # Diagonal connections if self._use_peepholes: c = sigmoid( f + self._forget_bias + self._w_f_diag * c_prev ) * c_prev + sigmoid( i + self._w_i_diag * c_prev ) * self._activation( j ) else: c = sigmoid(f + self._forget_bias) * c_prev + sigmoid( i ) * self._activation(j) if self._cell_clip is not None: c = tf.clip_by_value(c, -self._cell_clip, self._cell_clip) if self._use_peepholes: m = sigmoid(o + self._w_o_diag * c) * self._activation(c) else: m = sigmoid(o) * self._activation(c) if self._num_proj is not None: m = tf.matmul(m, self._proj_kernel) if self._proj_clip is not None: m = tf.clip_by_value(m, -self._proj_clip, self._proj_clip) new_state = ( LSTMStateTuple(c, m) if self._state_is_tuple else tf.concat([c, m], 1) ) return m, new_state def get_config(self): config = { "num_units": self._num_units, "use_peepholes": self._use_peepholes, "cell_clip": self._cell_clip, "initializer": initializers.serialize(self._initializer), "num_proj": self._num_proj, "proj_clip": self._proj_clip, "num_unit_shards": self._num_unit_shards, "num_proj_shards": self._num_proj_shards, "forget_bias": self._forget_bias, "state_is_tuple": self._state_is_tuple, "activation": activations.serialize(self._activation), "reuse": self._reuse, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export(v1=["keras.__internal__.legacy.rnn_cell.MultiRNNCell"]) @tf_export(v1=["nn.rnn_cell.MultiRNNCell"]) class MultiRNNCell(RNNCell): """RNN cell composed sequentially of multiple simple cells. Example: ```python num_units = [128, 64] cells = [BasicLSTMCell(num_units=n) for n in num_units] stacked_rnn_cell = MultiRNNCell(cells) ``` """ def __init__(self, cells, state_is_tuple=True): """Create a RNN cell composed sequentially of a number of RNNCells. Args: cells: list of RNNCells that will be composed in this order. state_is_tuple: If True, accepted and returned states are n-tuples, where `n = len(cells)`. If False, the states are all concatenated along the column axis. This latter behavior will soon be deprecated. Raises: ValueError: if cells is empty (not allowed), or at least one of the cells returns a state tuple but the flag `state_is_tuple` is `False`. """ logging.warning( "`tf.nn.rnn_cell.MultiRNNCell` is deprecated. This class " "is equivalent as `tf.keras.layers.StackedRNNCells`, " "and will be replaced by that in Tensorflow 2.0." ) super().__init__() if not cells: raise ValueError("Must specify at least one cell for MultiRNNCell.") if not tf.nest.is_nested(cells): raise TypeError( f"cells must be a list or tuple, but received: {cells}." ) if len(set(id(cell) for cell in cells)) < len(cells): logging.log_first_n( logging.WARN, "At least two cells provided to MultiRNNCell " "are the same object and will share weights.", 1, ) self._cells = cells for cell_number, cell in enumerate(self._cells): # Add Trackable dependencies on these cells so their variables get # saved with this object when using object-based saving. if isinstance(cell, tf.__internal__.tracking.Trackable): # TODO(allenl): Track down non-Trackable callers. self._track_trackable(cell, name="cell-%d" % (cell_number,)) self._state_is_tuple = state_is_tuple if not state_is_tuple: if any(tf.nest.is_nested(c.state_size) for c in self._cells): raise ValueError( "Some cells return tuples of states, but the flag " "state_is_tuple is not set. " f"State sizes are: {[c.state_size for c in self._cells]}" ) @property def state_size(self): if self._state_is_tuple: return tuple(cell.state_size for cell in self._cells) else: return sum(cell.state_size for cell in self._cells) @property def output_size(self): return self._cells[-1].output_size def zero_state(self, batch_size, dtype): with backend.name_scope(type(self).__name__ + "ZeroState"): if self._state_is_tuple: return tuple( cell.zero_state(batch_size, dtype) for cell in self._cells ) else: # We know here that state_size of each cell is not a tuple and # presumably does not contain TensorArrays or anything else # fancy return super().zero_state(batch_size, dtype) @property def trainable_weights(self): if not self.trainable: return [] weights = [] for cell in self._cells: if isinstance(cell, base_layer.Layer): weights += cell.trainable_weights return weights @property def non_trainable_weights(self): weights = [] for cell in self._cells: if isinstance(cell, base_layer.Layer): weights += cell.non_trainable_weights if not self.trainable: trainable_weights = [] for cell in self._cells: if isinstance(cell, base_layer.Layer): trainable_weights += cell.trainable_weights return trainable_weights + weights return weights def call(self, inputs, state): """Run this multi-layer cell on inputs, starting from state.""" cur_state_pos = 0 cur_inp = inputs new_states = [] for i, cell in enumerate(self._cells): with tf.compat.v1.variable_scope("cell_%d" % i): if self._state_is_tuple: if not tf.nest.is_nested(state): raise ValueError( "Expected state to be a tuple of length " f"{len(self.state_size)}" f", but received: {state}" ) cur_state = state[i] else: cur_state = tf.slice( state, [0, cur_state_pos], [-1, cell.state_size] ) cur_state_pos += cell.state_size cur_inp, new_state = cell(cur_inp, cur_state) new_states.append(new_state) new_states = ( tuple(new_states) if self._state_is_tuple else tf.concat(new_states, 1) ) return cur_inp, new_states def _check_rnn_cell_input_dtypes(inputs): """Check whether the input tensors are with supported dtypes. Default RNN cells only support floats and complex as its dtypes since the activation function (tanh and sigmoid) only allow those types. This function will throw a proper error message if the inputs is not in a supported type. Args: inputs: tensor or nested structure of tensors that are feed to RNN cell as input or state. Raises: ValueError: if any of the input tensor are not having dtypes of float or complex. """ for t in tf.nest.flatten(inputs): _check_supported_dtypes(t.dtype) def _check_supported_dtypes(dtype): if dtype is None: return dtype = tf.as_dtype(dtype) if not (dtype.is_floating or dtype.is_complex): raise ValueError( "RNN cell only supports floating point inputs, " f"but received dtype: {dtype}" )