# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities related to layer/model functionality.""" import copy import functools import re import weakref import numpy as np import tensorflow.compat.v2 as tf from keras import initializers from keras.utils import io_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.utils.get_source_inputs") def get_source_inputs(tensor, layer=None, node_index=None): """Returns the list of input tensors necessary to compute `tensor`. Output will always be a list of tensors (potentially with 1 element). Args: tensor: The tensor to start from. layer: Origin layer of the tensor. Will be determined via tensor._keras_history if not provided. node_index: Origin node index of the tensor. Returns: List of input tensors. """ if not hasattr(tensor, "_keras_history"): return tensor if layer is None or node_index: layer, node_index, _ = tensor._keras_history if not layer._inbound_nodes: return [tensor] else: node = layer._inbound_nodes[node_index] if node.is_input: # Reached an Input layer, stop recursion. return tf.nest.flatten(node.input_tensors) else: source_tensors = [] for layer, node_index, _, tensor in node.iterate_inbound(): previous_sources = get_source_inputs(tensor, layer, node_index) # Avoid input redundancy. for x in previous_sources: if all(x is not t for t in source_tensors): source_tensors.append(x) return source_tensors def validate_string_arg( input_data, allowable_strings, layer_name, arg_name, allow_none=False, allow_callables=False, ): """Validates the correctness of a string-based arg.""" if allow_none and input_data is None: return elif allow_callables and callable(input_data): return elif isinstance(input_data, str) and input_data in allowable_strings: return else: allowed_args = "`None`, " if allow_none else "" allowed_args += "a `Callable`, " if allow_callables else "" allowed_args += f"or one of the following values: {allowable_strings}" if allow_callables: callable_note = ( f"If restoring a model and `{arg_name}` is a custom callable, " "please ensure the callable is registered as a custom object. " "See https://www.tensorflow.org/guide/keras/save_and_serialize" "#registering_the_custom_object for details. " ) else: callable_note = "" raise ValueError( f"Unkown value for `{arg_name}` argument of layer {layer_name}. " f"{callable_note}Allowed values are: {allowed_args}. Received: " f"{input_data}" ) def count_params(weights): """Count the total number of scalars composing the weights. Args: weights: An iterable containing the weights on which to compute params Returns: The total number of scalars composing the weights """ unique_weights = {id(w): w for w in weights}.values() # Ignore TrackableWeightHandlers, which will not have a shape defined. unique_weights = [w for w in unique_weights if hasattr(w, "shape")] weight_shapes = [w.shape.as_list() for w in unique_weights] standardized_weight_shapes = [ [0 if w_i is None else w_i for w_i in w] for w in weight_shapes ] return int(sum(np.prod(p) for p in standardized_weight_shapes)) def get_layer_index_bound_by_layer_name(model, layer_range=None): """Get the layer indexes from the model based on layer names. The layer indexes can be used to slice the model into sub models for display. Args: model: `tf.keras.Model` instance. layer_names: a list or tuple of 2 strings, the starting layer name and ending layer name (both inclusive) for the result. All layers will be included when `None` is provided. Returns: The index value of layer based on its unique name (layer_names). Output will be [first_layer_index, last_layer_index + 1]. """ if layer_range is not None: if len(layer_range) != 2: raise ValueError( "layer_range must be a list or tuple of length 2. Received: " f"layer_range = {layer_range} of length {len(layer_range)}" ) if not isinstance(layer_range[0], str) or not isinstance( layer_range[1], str ): raise ValueError( "layer_range should contain string type only. " f"Received: {layer_range}" ) else: return [0, len(model.layers)] lower_index = [ idx for idx, layer in enumerate(model.layers) if re.match(layer_range[0], layer.name) ] upper_index = [ idx for idx, layer in enumerate(model.layers) if re.match(layer_range[1], layer.name) ] if not lower_index or not upper_index: raise ValueError( "Passed layer_names do not match the layer names in the model. " f"Received: {layer_range}" ) if min(lower_index) > max(upper_index): return [min(upper_index), max(lower_index) + 1] return [min(lower_index), max(upper_index) + 1] def print_summary( model, line_length=None, positions=None, print_fn=None, expand_nested=False, show_trainable=False, layer_range=None, ): """Prints a summary of a model. Args: model: Keras model instance. line_length: Total length of printed lines (e.g. set this to adapt the display to different terminal window sizes). positions: Relative or absolute positions of log elements in each line. If not provided, defaults to `[.33, .55, .67, 1.]`. print_fn: Print function to use. It will be called on each line of the summary. You can set it to a custom function in order to capture the string summary. It defaults to `print` (prints to stdout). expand_nested: Whether to expand the nested models. If not provided, defaults to `False`. show_trainable: Whether to show if a layer is trainable. If not provided, defaults to `False`. layer_range: List or tuple containing two strings, the starting layer name and ending layer name (both inclusive), indicating the range of layers to be printed in the summary. The strings could also be regexes instead of an exact name. In this case, the starting layer will be the first layer that matches `layer_range[0]` and the ending layer will be the last element that matches `layer_range[1]`. By default (`None`) all layers in the model are included in the summary. """ if print_fn is None: print_fn = io_utils.print_msg if model.__class__.__name__ == "Sequential": sequential_like = True elif not model._is_graph_network: # We treat subclassed models as a simple sequence of layers, for logging # purposes. sequential_like = True else: sequential_like = True nodes_by_depth = model._nodes_by_depth.values() nodes = [] for v in nodes_by_depth: if (len(v) > 1) or ( len(v) == 1 and len(tf.nest.flatten(v[0].keras_inputs)) > 1 ): # if the model has multiple nodes # or if the nodes have multiple inbound_layers # the model is no longer sequential sequential_like = False break nodes += v if sequential_like: # search for shared layers for layer in model.layers: flag = False for node in layer._inbound_nodes: if node in nodes: if flag: sequential_like = False break else: flag = True if not sequential_like: break if sequential_like: line_length = line_length or 65 positions = positions or [0.45, 0.85, 1.0] if positions[-1] <= 1: positions = [int(line_length * p) for p in positions] # header names for the different log elements to_display = ["Layer (type)", "Output Shape", "Param #"] else: line_length = line_length or 98 positions = positions or [0.33, 0.55, 0.67, 1.0] if positions[-1] <= 1: positions = [int(line_length * p) for p in positions] # header names for the different log elements to_display = ["Layer (type)", "Output Shape", "Param #", "Connected to"] relevant_nodes = [] for v in model._nodes_by_depth.values(): relevant_nodes += v if show_trainable: line_length += 11 positions.append(line_length) to_display.append("Trainable") layer_range = get_layer_index_bound_by_layer_name(model, layer_range) def print_row(fields, positions, nested_level=0): left_to_print = [str(x) for x in fields] while any(left_to_print): line = "" for col in range(len(left_to_print)): if col > 0: start_pos = positions[col - 1] else: start_pos = 0 end_pos = positions[col] # Leave room for 2 spaces to delineate columns # we don't need any if we are printing the last column space = 2 if col != len(positions) - 1 else 0 cutoff = end_pos - start_pos - space fit_into_line = left_to_print[col][:cutoff] # For nicer formatting we line-break on seeing end of # tuple/dict etc. line_break_conditions = ("),", "},", "],", "',") candidate_cutoffs = [ fit_into_line.find(x) + len(x) for x in line_break_conditions if fit_into_line.find(x) >= 0 ] if candidate_cutoffs: cutoff = min(candidate_cutoffs) fit_into_line = fit_into_line[:cutoff] if col == 0: line += "|" * nested_level + " " line += fit_into_line line += " " * space if space else "" left_to_print[col] = left_to_print[col][cutoff:] # Pad out to the next position if nested_level: line += " " * (positions[col] - len(line) - nested_level) else: line += " " * (positions[col] - len(line)) line += "|" * nested_level print_fn(line) print_fn(f'Model: "{model.name}"') print_fn("_" * line_length) print_row(to_display, positions) print_fn("=" * line_length) def print_layer_summary(layer, nested_level=0): """Prints a summary for a single layer. Args: layer: target layer. nested_level: level of nesting of the layer inside its parent layer (e.g. 0 for a top-level layer, 1 for a nested layer). """ try: output_shape = layer.output_shape except AttributeError: output_shape = "multiple" except RuntimeError: # output_shape unknown in Eager mode. output_shape = "?" name = layer.name cls_name = layer.__class__.__name__ if not layer.built and not getattr(layer, "_is_graph_network", False): # If a subclassed model has a layer that is not called in # Model.call, the layer will not be built and we cannot call # layer.count_params(). params = "0 (unused)" else: params = layer.count_params() fields = [name + " (" + cls_name + ")", output_shape, params] if show_trainable: fields.append("Y" if layer.trainable else "N") print_row(fields, positions, nested_level) def print_layer_summary_with_connections(layer, nested_level=0): """Prints a summary for a single layer (including its connections). Args: layer: target layer. nested_level: level of nesting of the layer inside its parent layer (e.g. 0 for a top-level layer, 1 for a nested layer). """ try: output_shape = layer.output_shape except AttributeError: output_shape = "multiple" connections = [] for node in layer._inbound_nodes: if relevant_nodes and node not in relevant_nodes: # node is not part of the current network continue for ( inbound_layer, node_index, tensor_index, _, ) in node.iterate_inbound(): connections.append( f"{inbound_layer.name}[{node_index}][{tensor_index}]" ) name = layer.name cls_name = layer.__class__.__name__ fields = [ name + " (" + cls_name + ")", output_shape, layer.count_params(), connections, ] if show_trainable: fields.append("Y" if layer.trainable else "N") print_row(fields, positions, nested_level) def print_layer(layer, nested_level=0, is_nested_last=False): if sequential_like: print_layer_summary(layer, nested_level) else: print_layer_summary_with_connections(layer, nested_level) if expand_nested and hasattr(layer, "layers") and layer.layers: print_fn( "|" * (nested_level + 1) + "¯" * (line_length - 2 * nested_level - 2) + "|" * (nested_level + 1) ) nested_layer = layer.layers is_nested_last = False for i in range(len(nested_layer)): if i == len(nested_layer) - 1: is_nested_last = True print_layer(nested_layer[i], nested_level + 1, is_nested_last) print_fn( "|" * nested_level + "¯" * (line_length - 2 * nested_level) + "|" * nested_level ) if not is_nested_last: print_fn( "|" * nested_level + " " * (line_length - 2 * nested_level) + "|" * nested_level ) for layer in model.layers[layer_range[0] : layer_range[1]]: print_layer(layer) print_fn("=" * line_length) if hasattr(model, "_collected_trainable_weights"): trainable_count = count_params(model._collected_trainable_weights) else: trainable_count = count_params(model.trainable_weights) non_trainable_count = count_params(model.non_trainable_weights) print_fn(f"Total params: {trainable_count + non_trainable_count:,}") print_fn(f"Trainable params: {trainable_count:,}") print_fn(f"Non-trainable params: {non_trainable_count:,}") print_fn("_" * line_length) def convert_dense_weights_data_format( dense, previous_feature_map_shape, target_data_format="channels_first" ): """Utility useful when changing a convnet's `data_format`. When porting the weights of a convnet from one data format to the other, if the convnet includes a `Flatten` layer (applied to the last convolutional feature map) followed by a `Dense` layer, the weights of that `Dense` layer should be updated to reflect the new dimension ordering. Args: dense: The target `Dense` layer. previous_feature_map_shape: A shape tuple of 3 integers, e.g. `(512, 7, 7)`. The shape of the convolutional feature map right before the `Flatten` layer that came before the target `Dense` layer. target_data_format: One of "channels_last", "channels_first". Set it "channels_last" if converting a "channels_first" model to "channels_last", or reciprocally. """ assert target_data_format in {"channels_last", "channels_first"} kernel, bias = dense.get_weights() for i in range(kernel.shape[1]): if target_data_format == "channels_first": c, h, w = previous_feature_map_shape original_fm_shape = (h, w, c) ki = kernel[:, i].reshape(original_fm_shape) ki = np.transpose(ki, (2, 0, 1)) # last -> first else: h, w, c = previous_feature_map_shape original_fm_shape = (c, h, w) ki = kernel[:, i].reshape(original_fm_shape) ki = np.transpose(ki, (1, 2, 0)) # first -> last kernel[:, i] = np.reshape(ki, (np.prod(previous_feature_map_shape),)) dense.set_weights([kernel, bias]) def is_builtin_layer(layer): if not getattr(layer, "_keras_api_names", None): return False # Subclasses of `Layer` that are not exported inherit the export name # of the base layer class. return layer._keras_api_names != ( "keras.layers.Layer", ) and layer._keras_api_names_v1 != ("keras.layers.Layer",) def cached_per_instance(f): """Lightweight decorator for caching lazily constructed properties. When to use: This decorator provides simple caching with minimal overhead. It is designed for properties which are expensive to compute and static over the life of a class instance, and provides no mechanism for cache invalidation. Thus it is best suited for lazily exposing derived properties of other static data. For classes with custom getattr / setattr behavior (such as trackable objects), storing cache results as object attributes is not performant. Instead, a specialized cache can significantly reduce property lookup overhead. (While still allowing the decorated property to be lazily computed.) Consider the following class: ``` class MyClass: def __setattr__(self, key, value): # Some expensive class specific code # ... # ... super(MyClass, self).__setattr__(key, value) @property def thing(self): # `thing` is expensive to compute (and may not even be requested), so we # want to lazily compute it and then cache it. output = getattr(self, '_thing', None) if output is None: self._thing = output = compute_thing(self) return output ``` It's also worth noting that ANY overriding of __setattr__, even something as simple as: ``` def __setattr__(self, key, value): super(MyClass, self).__setattr__(key, value) ``` Slows down attribute assignment by nearly 10x. By contrast, replacing the definition of `thing` with the following sidesteps the expensive __setattr__ altogether: ''' @property @tracking.cached_per_instance def thing(self): # `thing` is expensive to compute (and may not even be requested), so we # want to lazily compute it and then cache it. return compute_thing(self) ''' Performance: The overhead for this decorator is ~0.4 us / call. A much lower overhead implementation (~0.085 us / call) can be achieved by using a custom dict type: ``` def dict_based_cache(f): class Cache(dict): __slots__ = () def __missing__(self, key): self[key] = output = f(key) return output return property(Cache().__getitem__) ``` However, that implementation holds class instances as keys, and as a result blocks garbage collection. (And modifying it to use weakref's as keys raises the lookup overhead to ~0.4 us) As a result, the WeakKeyDictionary implementation below turns out to be more prudent. Args: f: The function to cache. Returns: f decorated with simple caching behavior. """ cache = weakref.WeakKeyDictionary() @functools.wraps(f) def wrapped(item): output = cache.get(item) if output is None: cache[item] = output = f(item) return output wrapped.cache = cache return wrapped def filter_empty_layer_containers(layer_list): """Filter out empty Layer-like containers and uniquify.""" # TODO(b/130381733): Make this an attribute in base_layer.Layer. existing = set() to_visit = layer_list[::-1] while to_visit: obj = to_visit.pop() if id(obj) in existing: continue existing.add(id(obj)) if hasattr(obj, "_is_layer") and not isinstance(obj, type): yield obj else: sub_layers = getattr(obj, "layers", None) or [] # Trackable data structures will not show up in ".layers" lists, but # the layers they contain will. to_visit.extend(sub_layers[::-1]) class CallFunctionSpec: """Caches the spec and provides utilities for handling call function args.""" def __init__(self, full_argspec): """Initialies a `CallFunctionSpec`. Args: full_argspec: the FullArgSpec of a call function of a layer. """ self._full_argspec = full_argspec self._arg_names = list(self._full_argspec.args) # Scrub `self` that appears if a decorator was applied. if self._arg_names and self._arg_names[0] == "self": self._arg_names = self._arg_names[1:] self._arg_names += self._full_argspec.kwonlyargs or [] call_accepts_kwargs = self._full_argspec.varkw is not None self._expects_training_arg = ( "training" in self._arg_names or call_accepts_kwargs ) self._expects_mask_arg = ( "mask" in self._arg_names or call_accepts_kwargs ) call_fn_defaults = self._full_argspec.defaults or [] defaults = dict() # The call arg defaults are an n-tuple of the last n elements of the # args list. (n = # of elements that have a default argument) for i in range(-1 * len(call_fn_defaults), 0): defaults[self._arg_names[i]] = call_fn_defaults[i] # The default training arg will be any (non-None) default specified in # the method signature, or None if no value is specified. defaults.update(self._full_argspec.kwonlydefaults or {}) self._default_training_arg = defaults.get("training") @property def full_argspec(self): """Returns the FullArgSpec of the call function.""" return self._full_argspec @property def arg_names(self): """List of names of args and kwonlyargs.""" # `arg_names` is not accurate if the layer has variable positional args. return self._arg_names @arg_names.setter def arg_names(self, value): self._arg_names = value @property @cached_per_instance def arg_positions(self): """Returns a dict mapping arg names to their index positions.""" # `arg_positions` is not accurate if the layer has variable positional # args. call_fn_arg_positions = dict() for pos, arg in enumerate(self._arg_names): call_fn_arg_positions[arg] = pos return call_fn_arg_positions @property def expects_training_arg(self): """Whether the call function uses 'training' as a parameter.""" return self._expects_training_arg @expects_training_arg.setter def expects_training_arg(self, value): self._expects_training_arg = value @property def expects_mask_arg(self): """Whether the call function uses `mask` as a parameter.""" return self._expects_mask_arg @expects_mask_arg.setter def expects_mask_arg(self, value): self._expects_mask_arg = value @property def default_training_arg(self): """The default value given to the "training" argument.""" return self._default_training_arg def arg_was_passed(self, arg_name, args, kwargs, inputs_in_args=False): """Returns true if argument is present in `args` or `kwargs`. Args: arg_name: String name of the argument to find. args: Tuple of args passed to the call function. kwargs: Dictionary of kwargs passed to the call function. inputs_in_args: Whether the input argument (the first argument in the call function) is included in `args`. Defaults to `False`. Returns: True if argument with `arg_name` is present in `args` or `kwargs`. """ # Performance optimization: do no work in most common case. if not args and not kwargs: return False if arg_name in kwargs: return True call_fn_args = self._arg_names if not inputs_in_args: # Ignore `inputs` arg. call_fn_args = call_fn_args[1:] return arg_name in dict(zip(call_fn_args, args)) def get_arg_value(self, arg_name, args, kwargs, inputs_in_args=False): """Retrieves the value for the argument with name `arg_name`. Args: arg_name: String name of the argument to find. args: Tuple of args passed to the call function. kwargs: Dictionary of kwargs passed to the call function. inputs_in_args: Whether the input argument (the first argument in the call function) is included in `args`. Defaults to `False`. Returns: The value of the argument with name `arg_name`, extracted from `args` or `kwargs`. Raises: KeyError if the value of `arg_name` cannot be found. """ if arg_name in kwargs: return kwargs[arg_name] call_fn_args = self._arg_names if not inputs_in_args: # Ignore `inputs` arg. call_fn_args = call_fn_args[1:] args_dict = dict(zip(call_fn_args, args)) return args_dict[arg_name] def set_arg_value( self, arg_name, new_value, args, kwargs, inputs_in_args=False, pop_kwarg_if_none=False, ): """Sets the value of an argument into the given args/kwargs. Args: arg_name: String name of the argument to find. new_value: New value to give to the argument. args: Tuple of args passed to the call function. kwargs: Dictionary of kwargs passed to the call function. inputs_in_args: Whether the input argument (the first argument in the call function) is included in `args`. Defaults to `False`. pop_kwarg_if_none: If the new value is `None`, and this is `True`, then the argument is deleted from `kwargs`. Returns: The updated `(args, kwargs)`. """ if self.full_argspec.varargs: try: arg_pos = self.full_argspec.args.index(arg_name) if self.full_argspec.args[0] == "self": arg_pos -= 1 except ValueError: arg_pos = None else: arg_pos = self.arg_positions.get(arg_name, None) if arg_pos is not None: if not inputs_in_args: # Ignore `inputs` arg. arg_pos = arg_pos - 1 if len(args) > arg_pos: args = list(args) args[arg_pos] = new_value return tuple(args), kwargs if new_value is None and pop_kwarg_if_none: kwargs.pop(arg_name, None) else: kwargs[arg_name] = new_value return args, kwargs def split_out_first_arg(self, args, kwargs): """Splits (args, kwargs) into (inputs, args, kwargs).""" # Grab the argument corresponding to the first argument in the # layer's `call` method spec. This will either be the first positional # argument, or it will be provided as a keyword argument. if args: inputs = args[0] args = args[1:] elif self._arg_names[0] in kwargs: kwargs = copy.copy(kwargs) inputs = kwargs.pop(self._arg_names[0]) else: raise ValueError( "The first argument to `Layer.call` must always be passed." ) return inputs, args, kwargs @keras_export("keras.utils.warmstart_embedding_matrix") def warmstart_embedding_matrix( base_vocabulary, new_vocabulary, base_embeddings, new_embeddings_initializer="uniform", ): """Warm start embedding matrix with changing vocab. This util can be used to warmstart the embedding layer matrix when vocabulary changes between previously saved checkpoint and model. Vocabulary change could mean, the size of the new vocab is different or the vocabulary is reshuffled or new vocabulary has been added to old vocabulary. If the vocabulary size changes, size of the embedding layer matrix also changes. This util remaps the old vocabulary embeddings to the new embedding layer matrix. Example: Here is an example that demonstrates how to use the `warmstart_embedding_matrix` util. >>> import keras >>> vocab_base = tf.convert_to_tensor(["unk", "a", "b", "c"]) >>> vocab_new = tf.convert_to_tensor( ... ["unk", "unk", "a", "b", "c", "d", "e"]) >>> vectorized_vocab_base = np.random.rand(vocab_base.shape[0], 3) >>> vectorized_vocab_new = np.random.rand(vocab_new.shape[0], 3) >>> warmstarted_embedding_matrix = warmstart_embedding_matrix( ... base_vocabulary=vocab_base, ... new_vocabulary=vocab_new, ... base_embeddings=vectorized_vocab_base, ... new_embeddings_initializer=keras.initializers.Constant( ... vectorized_vocab_new)) Here is an example that demonstrates how to get vocabulary and embedding weights from layers, use the `warmstart_embedding_matrix` util to remap the layer embeddings and continue with model training. ``` # get old and new vocabulary by using layer.get_vocabulary() # for example assume TextVectorization layer is used base_vocabulary = old_text_vectorization_layer.get_vocabulary() new_vocabulary = new_text_vectorization_layer.get_vocabulary() # get previous embedding layer weights embedding_weights_base = model.get_layer('embedding').get_weights()[0] warmstarted_embedding = keras.utils.warmstart_embedding_matrix( base_vocabulary, new_vocabulary, base_embeddings=embedding_weights_base, new_embeddings_initializer="uniform") updated_embedding_variable = tf.Variable(warmstarted_embedding) # update embedding layer weights model.layers[1].embeddings = updated_embedding_variable model.fit(..) # continue with model training ``` Args: base_vocabulary: The list of vocabulary terms that the preexisting embedding matrix `base_embeddings` represents. It can be either a 1D array/tensor or a tuple/list of vocabulary terms (strings), or a path to a vocabulary text file. If passing a file path, the file should contain one line per term in the vocabulary. new_vocabulary: The list of vocabulary terms for the new vocabulary (same format as above). base_embeddings: NumPy array or tensor representing the preexisting embedding matrix. new_embeddings_initializer: Initializer for embedding vectors for previously unseen terms to be added to the new embedding matrix (see `keras.initializers`). Defaults to "uniform". new_embedding matrix needs to be specified with "constant" initializer. matrix. Default value is None. Returns: tf.tensor of remapped embedding layer matrix """ # convert vocab to list base_vocabulary = convert_vocab_to_list(base_vocabulary) new_vocabulary = convert_vocab_to_list(new_vocabulary) # Initialize the new embedding layer matrix new_embeddings_initializer = initializers.get(new_embeddings_initializer) new_embedding = new_embeddings_initializer( shape=(len(new_vocabulary), base_embeddings.shape[1]), dtype=base_embeddings.dtype, ) # create mapping dict {vocab:index} base_vocabulary_dict = dict( zip(base_vocabulary, range(len(base_vocabulary))) ) indices_base_vocabulary = [] indices_new_vocabulary = [] for index, key in enumerate(new_vocabulary): if key in base_vocabulary_dict: indices_base_vocabulary.append(base_vocabulary_dict[key]) indices_new_vocabulary.append(int(index)) # update embedding matrix if indices_base_vocabulary: values_to_update = tf.gather(base_embeddings, indices_base_vocabulary) new_embedding = tf.tensor_scatter_nd_update( new_embedding, tf.expand_dims(indices_new_vocabulary, axis=1), values_to_update, ) return new_embedding def convert_vocab_to_list(vocab): """Convert input vacabulary to list.""" vocab_list = [] if tf.is_tensor(vocab): vocab_list = list(vocab.numpy()) elif isinstance(vocab, (np.ndarray, tuple, list)): vocab_list = list(vocab) elif isinstance(vocab, str): if not tf.io.gfile.exists(vocab): raise ValueError(f"Vocabulary file {vocab} does not exist.") with tf.io.gfile.GFile(vocab, "r") as vocabulary_file: vocab_list = vocabulary_file.read().splitlines() else: raise ValueError( "Vocabulary is expected to be either a NumPy array, " "list, 1D tensor or a vocabulary text file. Instead type " f"{type(vocab)} was received." ) if len(vocab_list) == 0: raise ValueError( "Vocabulary is expected to be either a NumPy array, " "list, 1D tensor or a vocabulary text file with at least one token." " Received 0 instead." ) return vocab_list