# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name # pylint: disable=g-classes-have-attributes """Constraints: functions that impose constraints on weight values.""" from tensorflow.python.framework import tensor_shape from tensorflow.python.keras import backend from tensorflow.python.keras.utils.generic_utils import deserialize_keras_object from tensorflow.python.keras.utils.generic_utils import serialize_keras_object from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import math_ops from tensorflow.python.util.tf_export import keras_export from tensorflow.tools.docs import doc_controls @keras_export('keras.constraints.Constraint') class Constraint: """Base class for weight constraints. A `Constraint` instance works like a stateless function. Users who subclass this class should override the `__call__` method, which takes a single weight parameter and return a projected version of that parameter (e.g. normalized or clipped). Constraints can be used with various Keras layers via the `kernel_constraint` or `bias_constraint` arguments. Here's a simple example of a non-negative weight constraint: >>> class NonNegative(tf.keras.constraints.Constraint): ... ... def __call__(self, w): ... return w * tf.cast(tf.math.greater_equal(w, 0.), w.dtype) >>> weight = tf.constant((-1.0, 1.0)) >>> NonNegative()(weight) >>> tf.keras.layers.Dense(4, kernel_constraint=NonNegative()) """ def __call__(self, w): """Applies the constraint to the input weight variable. By default, the inputs weight variable is not modified. Users should override this method to implement their own projection function. Args: w: Input weight variable. Returns: Projected variable (by default, returns unmodified inputs). """ return w def get_config(self): """Returns a Python dict of the object config. A constraint config is a Python dictionary (JSON-serializable) that can be used to reinstantiate the same object. Returns: Python dict containing the configuration of the constraint object. """ return {} @keras_export('keras.constraints.MaxNorm', 'keras.constraints.max_norm') class MaxNorm(Constraint): """MaxNorm weight constraint. Constrains the weights incident to each hidden unit to have a norm less than or equal to a desired value. Also available via the shortcut function `tf.keras.constraints.max_norm`. Args: max_value: the maximum norm value for the incoming weights. axis: integer, axis along which to calculate weight norms. For instance, in a `Dense` layer the weight matrix has shape `(input_dim, output_dim)`, set `axis` to `0` to constrain each weight vector of length `(input_dim,)`. In a `Conv2D` layer with `data_format="channels_last"`, the weight tensor has shape `(rows, cols, input_depth, output_depth)`, set `axis` to `[0, 1, 2]` to constrain the weights of each filter tensor of size `(rows, cols, input_depth)`. """ def __init__(self, max_value=2, axis=0): self.max_value = max_value self.axis = axis @doc_controls.do_not_generate_docs def __call__(self, w): norms = backend.sqrt( math_ops.reduce_sum(math_ops.square(w), axis=self.axis, keepdims=True)) desired = backend.clip(norms, 0, self.max_value) return w * (desired / (backend.epsilon() + norms)) @doc_controls.do_not_generate_docs def get_config(self): return {'max_value': self.max_value, 'axis': self.axis} @keras_export('keras.constraints.NonNeg', 'keras.constraints.non_neg') class NonNeg(Constraint): """Constrains the weights to be non-negative. Also available via the shortcut function `tf.keras.constraints.non_neg`. """ def __call__(self, w): return w * math_ops.cast(math_ops.greater_equal(w, 0.), backend.floatx()) @keras_export('keras.constraints.UnitNorm', 'keras.constraints.unit_norm') class UnitNorm(Constraint): """Constrains the weights incident to each hidden unit to have unit norm. Also available via the shortcut function `tf.keras.constraints.unit_norm`. Args: axis: integer, axis along which to calculate weight norms. For instance, in a `Dense` layer the weight matrix has shape `(input_dim, output_dim)`, set `axis` to `0` to constrain each weight vector of length `(input_dim,)`. In a `Conv2D` layer with `data_format="channels_last"`, the weight tensor has shape `(rows, cols, input_depth, output_depth)`, set `axis` to `[0, 1, 2]` to constrain the weights of each filter tensor of size `(rows, cols, input_depth)`. """ def __init__(self, axis=0): self.axis = axis @doc_controls.do_not_generate_docs def __call__(self, w): return w / ( backend.epsilon() + backend.sqrt( math_ops.reduce_sum( math_ops.square(w), axis=self.axis, keepdims=True))) @doc_controls.do_not_generate_docs def get_config(self): return {'axis': self.axis} @keras_export('keras.constraints.MinMaxNorm', 'keras.constraints.min_max_norm') class MinMaxNorm(Constraint): """MinMaxNorm weight constraint. Constrains the weights incident to each hidden unit to have the norm between a lower bound and an upper bound. Also available via the shortcut function `tf.keras.constraints.min_max_norm`. Args: min_value: the minimum norm for the incoming weights. max_value: the maximum norm for the incoming weights. rate: rate for enforcing the constraint: weights will be rescaled to yield `(1 - rate) * norm + rate * norm.clip(min_value, max_value)`. Effectively, this means that rate=1.0 stands for strict enforcement of the constraint, while rate<1.0 means that weights will be rescaled at each step to slowly move towards a value inside the desired interval. axis: integer, axis along which to calculate weight norms. For instance, in a `Dense` layer the weight matrix has shape `(input_dim, output_dim)`, set `axis` to `0` to constrain each weight vector of length `(input_dim,)`. In a `Conv2D` layer with `data_format="channels_last"`, the weight tensor has shape `(rows, cols, input_depth, output_depth)`, set `axis` to `[0, 1, 2]` to constrain the weights of each filter tensor of size `(rows, cols, input_depth)`. """ def __init__(self, min_value=0.0, max_value=1.0, rate=1.0, axis=0): self.min_value = min_value self.max_value = max_value self.rate = rate self.axis = axis @doc_controls.do_not_generate_docs def __call__(self, w): norms = backend.sqrt( math_ops.reduce_sum(math_ops.square(w), axis=self.axis, keepdims=True)) desired = ( self.rate * backend.clip(norms, self.min_value, self.max_value) + (1 - self.rate) * norms) return w * (desired / (backend.epsilon() + norms)) @doc_controls.do_not_generate_docs def get_config(self): return { 'min_value': self.min_value, 'max_value': self.max_value, 'rate': self.rate, 'axis': self.axis } @keras_export('keras.constraints.RadialConstraint', 'keras.constraints.radial_constraint') class RadialConstraint(Constraint): """Constrains `Conv2D` kernel weights to be the same for each radius. Also available via the shortcut function `tf.keras.constraints.radial_constraint`. For example, the desired output for the following 4-by-4 kernel: ``` kernel = [[v_00, v_01, v_02, v_03], [v_10, v_11, v_12, v_13], [v_20, v_21, v_22, v_23], [v_30, v_31, v_32, v_33]] ``` is this:: ``` kernel = [[v_11, v_11, v_11, v_11], [v_11, v_33, v_33, v_11], [v_11, v_33, v_33, v_11], [v_11, v_11, v_11, v_11]] ``` This constraint can be applied to any `Conv2D` layer version, including `Conv2DTranspose` and `SeparableConv2D`, and with either `"channels_last"` or `"channels_first"` data format. The method assumes the weight tensor is of shape `(rows, cols, input_depth, output_depth)`. """ @doc_controls.do_not_generate_docs def __call__(self, w): w_shape = w.shape if w_shape.rank is None or w_shape.rank != 4: raise ValueError( 'The weight tensor must be of rank 4, but is of shape: %s' % w_shape) height, width, channels, kernels = w_shape w = backend.reshape(w, (height, width, channels * kernels)) # TODO(cpeter): Switch map_fn for a faster tf.vectorized_map once # backend.switch is supported. w = backend.map_fn( self._kernel_constraint, backend.stack(array_ops.unstack(w, axis=-1), axis=0)) return backend.reshape(backend.stack(array_ops.unstack(w, axis=0), axis=-1), (height, width, channels, kernels)) def _kernel_constraint(self, kernel): """Radially constraints a kernel with shape (height, width, channels).""" padding = backend.constant([[1, 1], [1, 1]], dtype='int32') kernel_shape = backend.shape(kernel)[0] start = backend.cast(kernel_shape / 2, 'int32') kernel_new = backend.switch( backend.cast(math_ops.floormod(kernel_shape, 2), 'bool'), lambda: kernel[start - 1:start, start - 1:start], lambda: kernel[start - 1:start, start - 1:start] + backend.zeros( # pylint: disable=g-long-lambda (2, 2), dtype=kernel.dtype)) index = backend.switch( backend.cast(math_ops.floormod(kernel_shape, 2), 'bool'), lambda: backend.constant(0, dtype='int32'), lambda: backend.constant(1, dtype='int32')) while_condition = lambda index, *args: backend.less(index, start) def body_fn(i, array): return i + 1, array_ops.pad( array, padding, constant_values=kernel[start + i, start + i]) _, kernel_new = control_flow_ops.while_loop( while_condition, body_fn, [index, kernel_new], shape_invariants=[index.get_shape(), tensor_shape.TensorShape([None, None])]) return kernel_new # Aliases. max_norm = MaxNorm non_neg = NonNeg unit_norm = UnitNorm min_max_norm = MinMaxNorm radial_constraint = RadialConstraint # Legacy aliases. maxnorm = max_norm nonneg = non_neg unitnorm = unit_norm @keras_export('keras.constraints.serialize') def serialize(constraint): return serialize_keras_object(constraint) @keras_export('keras.constraints.deserialize') def deserialize(config, custom_objects=None): return deserialize_keras_object( config, module_objects=globals(), custom_objects=custom_objects, printable_module_name='constraint') @keras_export('keras.constraints.get') def get(identifier): if identifier is None: return None if isinstance(identifier, dict): return deserialize(identifier) elif isinstance(identifier, str): config = {'class_name': str(identifier), 'config': {}} return deserialize(config) elif callable(identifier): return identifier else: raise ValueError('Could not interpret constraint identifier: ' + str(identifier))