# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Ftrl-proximal optimizer implementation.""" # pylint: disable=g-classes-have-attributes from tensorflow.python.keras.optimizer_v2 import optimizer_v2 from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.training import gen_training_ops from tensorflow.python.util.tf_export import keras_export @keras_export('keras.optimizers.Ftrl') class Ftrl(optimizer_v2.OptimizerV2): r"""Optimizer that implements the FTRL algorithm. "Follow The Regularized Leader" (FTRL) is an optimization algorithm developed at Google for click-through rate prediction in the early 2010s. It is most suitable for shallow models with large and sparse feature spaces. The algorithm is described by [McMahan et al., 2013](https://research.google.com/pubs/archive/41159.pdf). The Keras version has support for both online L2 regularization (the L2 regularization described in the paper above) and shrinkage-type L2 regularization (which is the addition of an L2 penalty to the loss function). Initialization: ```python n = 0 sigma = 0 z = 0 ``` Update rule for one variable `w`: ```python prev_n = n n = n + g ** 2 sigma = (sqrt(n) - sqrt(prev_n)) / lr z = z + g - sigma * w if abs(z) < lambda_1: w = 0 else: w = (sgn(z) * lambda_1 - z) / ((beta + sqrt(n)) / alpha + lambda_2) ``` Notation: - `lr` is the learning rate - `g` is the gradient for the variable - `lambda_1` is the L1 regularization strength - `lambda_2` is the L2 regularization strength Check the documentation for the `l2_shrinkage_regularization_strength` parameter for more details when shrinkage is enabled, in which case gradient is replaced with a gradient with shrinkage. Args: learning_rate: A `Tensor`, floating point value, or a schedule that is a `tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate. learning_rate_power: A float value, must be less or equal to zero. Controls how the learning rate decreases during training. Use zero for a fixed learning rate. initial_accumulator_value: The starting value for accumulators. Only zero or positive values are allowed. l1_regularization_strength: A float value, must be greater than or equal to zero. Defaults to 0.0. l2_regularization_strength: A float value, must be greater than or equal to zero. Defaults to 0.0. name: Optional name prefix for the operations created when applying gradients. Defaults to `"Ftrl"`. l2_shrinkage_regularization_strength: A float value, must be greater than or equal to zero. This differs from L2 above in that the L2 above is a stabilization penalty, whereas this L2 shrinkage is a magnitude penalty. When input is sparse shrinkage will only happen on the active weights. beta: A float value, representing the beta value from the paper. Defaults to 0.0. **kwargs: Keyword arguments. Allowed to be one of `"clipnorm"` or `"clipvalue"`. `"clipnorm"` (float) clips gradients by norm; `"clipvalue"` (float) clips gradients by value. Reference: - [McMahan et al., 2013]( https://research.google.com/pubs/archive/41159.pdf) """ def __init__(self, learning_rate=0.001, learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, name='Ftrl', l2_shrinkage_regularization_strength=0.0, beta=0.0, **kwargs): super(Ftrl, self).__init__(name, **kwargs) if initial_accumulator_value < 0.0: raise ValueError( 'initial_accumulator_value %f needs to be positive or zero' % initial_accumulator_value) if learning_rate_power > 0.0: raise ValueError('learning_rate_power %f needs to be negative or zero' % learning_rate_power) if l1_regularization_strength < 0.0: raise ValueError( 'l1_regularization_strength %f needs to be positive or zero' % l1_regularization_strength) if l2_regularization_strength < 0.0: raise ValueError( 'l2_regularization_strength %f needs to be positive or zero' % l2_regularization_strength) if l2_shrinkage_regularization_strength < 0.0: raise ValueError( 'l2_shrinkage_regularization_strength %f needs to be positive' ' or zero' % l2_shrinkage_regularization_strength) self._set_hyper('learning_rate', learning_rate) self._set_hyper('decay', self._initial_decay) self._set_hyper('learning_rate_power', learning_rate_power) self._set_hyper('l1_regularization_strength', l1_regularization_strength) self._set_hyper('l2_regularization_strength', l2_regularization_strength) self._set_hyper('beta', beta) self._initial_accumulator_value = initial_accumulator_value self._l2_shrinkage_regularization_strength = ( l2_shrinkage_regularization_strength) def _create_slots(self, var_list): # Create the "accum" and "linear" slots. for var in var_list: dtype = var.dtype.base_dtype init = init_ops.constant_initializer( self._initial_accumulator_value, dtype=dtype) self.add_slot(var, 'accumulator', init) self.add_slot(var, 'linear') def _prepare_local(self, var_device, var_dtype, apply_state): super(Ftrl, self)._prepare_local(var_device, var_dtype, apply_state) apply_state[(var_device, var_dtype)].update( dict( learning_rate_power=array_ops.identity( self._get_hyper('learning_rate_power', var_dtype)), l1_regularization_strength=array_ops.identity( self._get_hyper('l1_regularization_strength', var_dtype)), l2_regularization_strength=array_ops.identity( self._get_hyper('l2_regularization_strength', var_dtype)), beta=array_ops.identity(self._get_hyper('beta', var_dtype)), l2_shrinkage_regularization_strength=math_ops.cast( self._l2_shrinkage_regularization_strength, var_dtype))) def _resource_apply_dense(self, grad, var, apply_state=None): var_device, var_dtype = var.device, var.dtype.base_dtype coefficients = ((apply_state or {}).get((var_device, var_dtype)) or self._fallback_apply_state(var_device, var_dtype)) # Adjust L2 regularization strength to include beta to avoid the underlying # TensorFlow ops needing to include it. adjusted_l2_regularization_strength = ( coefficients['l2_regularization_strength'] + coefficients['beta'] / (2. * coefficients['lr_t'])) accum = self.get_slot(var, 'accumulator') linear = self.get_slot(var, 'linear') if self._l2_shrinkage_regularization_strength <= 0.0: return gen_training_ops.ResourceApplyFtrl( var=var.handle, accum=accum.handle, linear=linear.handle, grad=grad, lr=coefficients['lr_t'], l1=coefficients['l1_regularization_strength'], l2=adjusted_l2_regularization_strength, lr_power=coefficients['learning_rate_power'], use_locking=self._use_locking) else: return gen_training_ops.ResourceApplyFtrlV2( var=var.handle, accum=accum.handle, linear=linear.handle, grad=grad, lr=coefficients['lr_t'], l1=coefficients['l1_regularization_strength'], l2=adjusted_l2_regularization_strength, l2_shrinkage=coefficients['l2_shrinkage_regularization_strength'], lr_power=coefficients['learning_rate_power'], use_locking=self._use_locking) def _resource_apply_sparse(self, grad, var, indices, apply_state=None): var_device, var_dtype = var.device, var.dtype.base_dtype coefficients = ((apply_state or {}).get((var_device, var_dtype)) or self._fallback_apply_state(var_device, var_dtype)) # Adjust L2 regularization strength to include beta to avoid the underlying # TensorFlow ops needing to include it. adjusted_l2_regularization_strength = ( coefficients['l2_regularization_strength'] + coefficients['beta'] / (2. * coefficients['lr_t'])) accum = self.get_slot(var, 'accumulator') linear = self.get_slot(var, 'linear') if self._l2_shrinkage_regularization_strength <= 0.0: return gen_training_ops.ResourceSparseApplyFtrl( var=var.handle, accum=accum.handle, linear=linear.handle, grad=grad, indices=indices, lr=coefficients['lr_t'], l1=coefficients['l1_regularization_strength'], l2=adjusted_l2_regularization_strength, lr_power=coefficients['learning_rate_power'], use_locking=self._use_locking) else: return gen_training_ops.ResourceSparseApplyFtrlV2( var=var.handle, accum=accum.handle, linear=linear.handle, grad=grad, indices=indices, lr=coefficients['lr_t'], l1=coefficients['l1_regularization_strength'], l2=adjusted_l2_regularization_strength, l2_shrinkage=coefficients['l2_shrinkage_regularization_strength'], lr_power=coefficients['learning_rate_power'], use_locking=self._use_locking) def get_config(self): config = super(Ftrl, self).get_config() config.update({ 'learning_rate': self._serialize_hyperparameter('learning_rate'), 'decay': self._initial_decay, 'initial_accumulator_value': self._initial_accumulator_value, 'learning_rate_power': self._serialize_hyperparameter('learning_rate_power'), 'l1_regularization_strength': self._serialize_hyperparameter('l1_regularization_strength'), 'l2_regularization_strength': self._serialize_hyperparameter('l2_regularization_strength'), 'beta': self._serialize_hyperparameter('beta'), 'l2_shrinkage_regularization_strength': self._l2_shrinkage_regularization_strength, }) return config