Intelegentny_Pszczelarz/.venv/Lib/site-packages/jax/_src/interpreters/mlir.py
2023-06-19 00:49:18 +02:00

1955 lines
80 KiB
Python

# Copyright 2021 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lowering and execution path that converts jaxprs into MLIR.
from __future__ import annotations
import collections
import dataclasses
import functools
from functools import partial
import io
import itertools
import re
import typing
from typing import (Any, Callable, Dict, Iterator, List, NamedTuple, Optional,
Protocol, Sequence, Set, Tuple, Type, Union)
import warnings
import numpy as np
from jax._src import ad_util
from jax._src import core
from jax._src import dtypes
from jax._src import effects as effects_lib
from jax._src import linear_util as lu
from jax._src import sharding_impls
from jax._src import source_info_util
from jax._src import util
from jax._src import xla_bridge as xb
from jax._src.config import config
from jax._src.interpreters import partial_eval as pe
from jax._src.interpreters import xla
from jax._src.lib import xla_client as xc
from jax._src.lib.mlir import dialects
from jax._src.lib.mlir import ir
from jax._src.lib.mlir.dialects import hlo
from jax._src.lib.mlir.dialects import func as func_dialect
from jax._src.sharding_impls import XLACompatibleSharding
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
T = typing.TypeVar("T")
Value = Any # = ir.Value
# mypy implicitly sets this variable to true when type checking.
MYPY = False
lowerable_effects: effects_lib.EffectTypeSet = effects_lib.lowerable_effects
# IR Helpers
def dense_int_elements(xs) -> ir.DenseIntElementsAttr:
return ir.DenseIntElementsAttr.get(np.asarray(xs, np.int64))
def dense_bool_elements(xs: Sequence[bool]) -> ir.DenseElementsAttr:
a = np.packbits(np.array(xs, np.bool_), bitorder='little')
# TODO(b/209005197): Work around for MLIR crash for non-splat single element
# buffers.
if len(xs) == 1:
a = np.array(0 if a.item() == 0 else 0xff, np.uint8)
return ir.DenseElementsAttr.get(
a, type=ir.IntegerType.get_signless(1), shape=[len(xs)])
def i32_attr(i): return ir.IntegerAttr.get(ir.IntegerType.get_signless(32), i)
def i64_attr(i): return ir.IntegerAttr.get(ir.IntegerType.get_signless(64), i)
def shape_tensor(sizes: Sequence[Union[int, ir.RankedTensorType]]
) -> ir.RankedTensorType:
int1d = aval_to_ir_type(core.ShapedArray((1,), np.int32))
i32_type = aval_to_ir_type(core.ShapedArray((), np.int32))
def lower_dim(d):
if type(d) is int:
return ir_constant(np.array([d], np.int32))
else:
if d.type != i32_type:
d = hlo.ConvertOp(i32_type, d)
return hlo.ReshapeOp(int1d, d).result
ds = map(lower_dim, sizes)
if not ds:
return ir_constant(np.array([], np.int32))
elif len(ds) == 1:
return ds[0]
else:
return hlo.ConcatenateOp(ds, i64_attr(0)).result
def delegate_lowering(ctx, lowering_fun, *args, **ctx_override_kwargs):
"""Side-effects on `ctx`"""
ctx_new = ctx.replace(**ctx_override_kwargs)
out = lowering_fun(ctx_new, *args)
ctx.set_tokens_out(ctx_new.tokens_out)
return out
# IR Types
# Non-canonicalized dtype to IR type mapping.
_dtype_to_ir_type : Dict[np.dtype, Callable[[], ir.Type]] = {
np.dtype(dtypes.float0): partial(ir.IntegerType.get_signless, 1),
np.dtype(np.bool_): partial(ir.IntegerType.get_signless, 1),
np.dtype(np.int8): partial(ir.IntegerType.get_signless, 8),
np.dtype(np.int16): partial(ir.IntegerType.get_signless, 16),
np.dtype(np.int32): partial(ir.IntegerType.get_signless, 32),
np.dtype(np.int64): partial(ir.IntegerType.get_signless, 64),
np.dtype(np.uint8): partial(ir.IntegerType.get_unsigned, 8),
np.dtype(np.uint16): partial(ir.IntegerType.get_unsigned, 16),
np.dtype(np.uint32): partial(ir.IntegerType.get_unsigned, 32),
np.dtype(np.uint64): partial(ir.IntegerType.get_unsigned, 64),
np.dtype(dtypes.float8_e4m3b11fnuz): ir.Float8E4M3B11FNUZType.get,
np.dtype(dtypes.float8_e4m3fn): ir.Float8E4M3FNType.get,
np.dtype(dtypes.float8_e5m2): ir.Float8E5M2Type.get,
np.dtype(dtypes.bfloat16): ir.BF16Type.get,
np.dtype(np.float16): ir.F16Type.get,
np.dtype(np.float32): ir.F32Type.get,
np.dtype(np.float64): ir.F64Type.get,
np.dtype(np.complex64): lambda: ir.ComplexType.get(ir.F32Type.get()),
np.dtype(np.complex128): lambda: ir.ComplexType.get(ir.F64Type.get()),
}
if dtypes.int4 is not None:
_dtype_to_ir_type.update({
np.dtype(dtypes.int4): partial(ir.IntegerType.get_signless, 4),
np.dtype(dtypes.uint4): partial(ir.IntegerType.get_unsigned, 4),
})
def dtype_to_ir_type(dtype: Union[np.dtype, np.generic]) -> ir.Type:
assert isinstance(dtype, (np.dtype, np.generic)), type(dtype)
dtype = np.dtype(dtype)
try:
ir_type_factory = _dtype_to_ir_type[dtype]
except KeyError as err:
raise TypeError(
f"No dtype_to_ir_type handler for dtype: {dtype}") from err
return ir_type_factory()
def _array_ir_types(aval: Union[core.ShapedArray, core.DShapedArray]
) -> Sequence[ir.Type]:
aval = core.physical_aval(aval) # type: ignore
if not core.is_constant_shape(aval.shape):
return _dynamic_array_ir_types(aval) # type: ignore
return (ir.RankedTensorType.get(aval.shape, dtype_to_ir_type(aval.dtype)),)
def _dynamic_array_ir_types(aval: core.ShapedArray) -> Sequence[ir.Type]:
dyn_size = ir.ShapedType.get_dynamic_size()
shape = [d if type(d) is int else dyn_size for d in aval.shape]
return (ir.RankedTensorType.get(shape, dtype_to_ir_type(aval.dtype)),)
ir_type_handlers: Dict[Type[core.AbstractValue],
Callable[[Any], Sequence[ir.Type]]] = {}
def aval_to_ir_types(aval: core.AbstractValue) -> Sequence[ir.Type]:
"""Converts a JAX aval to zero or more MLIR IR types.
In general, a JAX value may be represented by multiple IR values, so this
function returns multiple types."""
try:
return ir_type_handlers[type(aval)](aval)
except KeyError as err:
raise TypeError(f"No ir_type_handler for aval type: {type(aval)}") from err
ir_type_handlers[core.ShapedArray] = _array_ir_types
ir_type_handlers[core.ConcreteArray] = _array_ir_types
ir_type_handlers[core.AbstractToken] = lambda _: [hlo.TokenType.get()]
ir_type_handlers[core.DShapedArray] = _dynamic_array_ir_types
def aval_to_ir_type(aval: core.AbstractValue) -> ir.Type:
"""Convenience wrapper around aval_to_ir_types for single types.
For some common cases, e.g. dense arrays, we know JAX values are represented
by a single IR value."""
types = aval_to_ir_types(aval)
if len(types) != 1:
raise TypeError(f"aval_to_ir_type called on {aval} which corresponds to "
f"multiple IR types {types}")
return types[0]
# Constants
class ConstantHandler(Protocol):
def __call__(self, val: Any, canonicalize_types: bool) -> Sequence[ir.Value]:
"""Builds an IR representation for a constant `val`.
A JAX value is represented by zero or more IR values."""
_constant_handlers : Dict[type, ConstantHandler] = {}
def register_constant_handler(type_: type, handler_fun: ConstantHandler):
_constant_handlers[type_] = handler_fun
def get_constant_handler(type_: type) -> ConstantHandler:
return _constant_handlers[type_]
def ir_constants(val: Any,
canonicalize_types: bool = True) -> Sequence[ir.Value]:
"""Translate a Python `val` to an IR constant, canonicalizing its dtype.
Args:
val: a Python value to be translated to a constant.
Returns:
A representation of the constant as a list of IR values.
"""
for t in type(val).__mro__:
handler = _constant_handlers.get(t)
if handler:
out = handler(val, canonicalize_types)
assert all(isinstance(v, ir.Value) for v in out), (type(val), out)
return out
if hasattr(val, '__jax_array__'):
return ir_constants(val.__jax_array__(), canonicalize_types)
raise TypeError(f"No constant handler for type: {type(val)}")
def ir_constant(val: Any, canonicalize_types: bool = True) -> ir.Value:
"""Convenience wrapper around ir_constants for singleton values."""
values = ir_constants(val, canonicalize_types=canonicalize_types)
if len(values) != 1:
raise TypeError(f"ir_constant called on {val} which corresponds to "
f"multiple IR values {values}")
return values[0]
def _numpy_array_constant(x: np.ndarray, canonicalize_types
) -> Sequence[ir.Value]:
if canonicalize_types:
x = np.asarray(x, dtypes.canonicalize_dtype(x.dtype))
element_type = dtype_to_ir_type(x.dtype)
shape = x.shape
if x.dtype == np.bool_:
nelems = x.size
x = np.packbits(x, bitorder='little')
# TODO(b/209005197): Work around for MLIR crash for non-splat single element
# buffers.
if nelems == 1:
x = np.array(0 if x.item() == 0 else 0xff, np.uint8)
elif x.dtype == dtypes.bfloat16:
x = x.view(np.uint16)
x = np.ascontiguousarray(x)
attr = ir.DenseElementsAttr.get(x, type=element_type, shape=shape)
return (hlo.ConstantOp(attr).result,)
def _masked_array_constant_handler(*args, **kwargs):
raise ValueError("numpy masked arrays are not supported as direct inputs to JAX functions. "
"Use arr.filled() to convert the value to a standard numpy array.")
register_constant_handler(np.ma.MaskedArray, _masked_array_constant_handler)
def _ndarray_constant_handler(val: np.ndarray, canonicalize_types
) -> Sequence[ir.Value]:
"""Constant handler for ndarray literals, handling zero-size strides.
In most cases this function calls _numpy_array_constant(val) except it has
special handling of arrays with any strides of size zero: for those, it
generates appropriate calls to NumpyArrayConstant, Broadcast, and Transpose
to avoid staging in large literals that might arise from np.zeros or np.ones
or the output of lax.broadcast (which uses np.broadcast_to which in turn
uses size-zero strides).
Args:
val: an ndarray.
Returns:
An XLA ComputationDataHandle / XlaOp representing the constant ndarray
staged into the XLA Computation.
"""
if dtypes.result_type(val) == dtypes.float0:
return _numpy_array_constant(np.zeros(val.shape, dtype=np.bool_),
canonicalize_types=False)
elif np.any(np.equal(0, val.strides)) and val.size > 0:
zero_stride_axes, = np.where(np.equal(0, val.strides))
other_axes, = np.where(np.not_equal(0, val.strides))
collapsed_val = val[tuple(0 if ax in zero_stride_axes else slice(None) # type: ignore
for ax in range(val.ndim))] # type: ignore
if canonicalize_types:
collapsed_val = np.asarray(
collapsed_val, dtypes.canonicalize_dtype(collapsed_val.dtype))
out = hlo.BroadcastInDimOp(
ir.RankedTensorType.get(
val.shape, dtype_to_ir_type(collapsed_val.dtype)),
_numpy_array_constant(collapsed_val, canonicalize_types=False)[0],
dense_int_elements(other_axes)).result
return (out,)
else:
return _numpy_array_constant(val, canonicalize_types)
register_constant_handler(np.ndarray, _ndarray_constant_handler)
for _scalar_type in [np.int8, np.int16, np.int32, np.int64,
np.uint8, np.uint16, np.uint32, np.uint64,
np.float16, np.float32, np.float64,
np.complex64, np.complex128,
np.bool_, np.longlong, dtypes.bfloat16]:
register_constant_handler(_scalar_type, _ndarray_constant_handler) # type: ignore
def _python_scalar_handler(dtype, val, canonicalize_dtypes):
return _numpy_array_constant(np.array(val, dtype), canonicalize_dtypes)
for ptype, dtype in dtypes.python_scalar_dtypes.items():
register_constant_handler(ptype, partial(_python_scalar_handler, dtype))
def _token_constant_handler(val, canonicalize_types):
return [hlo.CreateTokenOp().result]
register_constant_handler(core.Token, _token_constant_handler)
# Source locations
def _traceback_to_location(tb: xc.Traceback) -> ir.Location:
"""Converts a full traceback to a callsite() MLIR location."""
frame_locs = []
for code, lasti in zip(*tb.raw_frames()):
frame = source_info_util.raw_frame_to_frame(code, lasti)
frame_locs.append(ir.Location.file(xla.get_canonical_source_file(frame),
frame.start_line, frame.start_column))
if len(frame_locs) == 0:
return ir.Location.unknown()
else:
return ir.Location.callsite(frame_locs[-1], frame_locs[-2::-1])
def _source_info_to_location(
primitive: core.Primitive, params: Dict,
source_info: source_info_util.SourceInfo,
name_stack: source_info_util.NameStack) -> ir.Location:
eqn_str = (f'{str(source_info.name_stack)}/'
f'{core.str_eqn_compact(primitive.name, params)}')
if config.jax_include_full_tracebacks_in_locations:
if source_info.traceback is None:
loc = ir.Location.unknown()
else:
loc = _traceback_to_location(source_info.traceback)
else:
frame = source_info_util.user_frame(source_info)
if frame is None:
loc = ir.Location.unknown()
else:
loc = ir.Location.file(xla.get_canonical_source_file(frame),
frame.start_line, frame.start_column)
loc = ir.Location.name(eqn_str, childLoc=loc)
# TODO(phawkins): also include primitive.name as the operator type.
return loc
# Translation rules
def make_ir_context() -> ir.Context:
"""Creates an MLIR context suitable for JAX IR."""
context = ir.Context()
# If threading is enabled, each MLIR context will keep alive a thread pool.
# Since we cache MLIR modules (and hence contexts), this means we might keep
# several threads alive for each cache entry. This is a terrible idea. However
# we don't do any heavy computation on MLIR modules from Python anyway, so we
# just disable threading.
context.enable_multithreading(False)
dialects.mhlo.register_mhlo_dialect(context)
dialects.chlo.register_dialect(context)
dialects.stablehlo.register_dialect(context)
return context
AxisContext = Union[
sharding_impls.SPMDAxisContext,
sharding_impls.ReplicaAxisContext,
sharding_impls.ShardingContext,
]
class ShapePolyLoweringState:
# The names of the dimension variables, sorted by name. This is the order in
# which they are passed to the IR functions that need them. This is only
# used for native serialization with polymorphic shapes when
# --jax_dynamic_shapes is off.
dim_vars: Sequence[str]
# Whether the module uses dimension variables, either in its inputs or
# from an inner call to a polymorphic Exported.
uses_dim_vars: bool
def __init__(self, dim_vars: Sequence[str]):
self.dim_vars = dim_vars
self.uses_dim_vars = (len(dim_vars) > 0)
@dataclasses.dataclass
class ModuleContext:
"""Module-wide context information for MLIR lowering."""
context: ir.Context
module: ir.Module
ip: ir.InsertionPoint
symbol_table: ir.SymbolTable
backend_or_name: Optional[Union[str, xb.XlaBackend]]
platform: str
axis_context: AxisContext
name_stack: source_info_util.NameStack
keepalives: List[Any]
channel_iterator: Iterator[int]
host_callbacks: List[Any]
# Keep state for the lowering of shape polymorphism
shape_poly_state: ShapePolyLoweringState
# Cached primitive lowerings.
cached_primitive_lowerings: Dict[Any, func_dialect.FuncOp]
cached_call_jaxpr_lowerings: Dict[Any, func_dialect.FuncOp]
@property
def axis_env(self) -> sharding_impls.AxisEnv:
return self.axis_context.axis_env
def __init__(
self,
backend_or_name: Optional[Union[str, xb.XlaBackend]],
platform: str,
axis_context: AxisContext,
name_stack: source_info_util.NameStack,
keepalives: List[Any],
channel_iterator: Iterator[int],
host_callbacks: List[Any],
context: Optional[ir.Context] = None,
module: Optional[ir.Module] = None,
ip: Optional[ir.InsertionPoint] = None,
symbol_table: Optional[ir.SymbolTable] = None,
cached_primitive_lowerings: Optional[Dict[Any,
func_dialect.FuncOp]] = None,
cached_call_jaxpr_lowerings: Optional[Dict[Any,
func_dialect.FuncOp]] = None,
shape_poly_state = None):
assert platform is not None
self.context = context or make_ir_context()
self.module = module or ir.Module.create(loc=ir.Location.unknown(self.context))
self.ip = ip or ir.InsertionPoint(self.module.body)
self.symbol_table = symbol_table or ir.SymbolTable(self.module.operation)
self.backend_or_name = backend_or_name
self.platform = platform
self.axis_context = axis_context
self.name_stack = name_stack
self.cached_primitive_lowerings = ({} if cached_primitive_lowerings is None
else cached_primitive_lowerings)
self.channel_iterator = channel_iterator
self.keepalives = keepalives
self.host_callbacks = host_callbacks
self.cached_call_jaxpr_lowerings = ({}
if cached_call_jaxpr_lowerings is None
else cached_call_jaxpr_lowerings)
self.shape_poly_state = shape_poly_state or ShapePolyLoweringState(())
@property
def backend(self) -> xb.XlaBackend:
if self.backend_or_name is None or isinstance(self.backend_or_name, str):
return xb.get_backend(self.backend_or_name)
return self.backend_or_name
def new_channel(self) -> int:
return next(self.channel_iterator)
def add_host_callback(self, host_callback: Any) -> None:
self.host_callbacks.append(host_callback)
def add_keepalive(self, keepalive: Any) -> None:
self.keepalives.append(keepalive)
def replace(self, **kw): return dataclasses.replace(self, **kw)
@dataclasses.dataclass
class LoweringRuleContext:
"""Per-rule context information for MLIR lowering."""
module_context: ModuleContext
primitive: Optional[core.Primitive]
avals_in: Sequence[core.AbstractValue]
avals_out: Any # Usually Sequence[core.AbstractValue], but sometimes None.
tokens_in: TokenSet
tokens_out: Optional[TokenSet] # Mutable store for output containers
axis_size_env: Optional[Dict[core.Var, ir.Value]] = None # Dynamic axis sizes
dim_var_values: Sequence[ir.Value] = () # The values for the dimension variables
# in same order as module_context.shape_poly_state.dim_vars
def set_tokens_out(self, tokens_out: TokenSet):
assert self.tokens_out is None, 'Should only set `tokens_out` once.'
self.tokens_out = tokens_out
def replace(self, **kw): return dataclasses.replace(self, **kw)
if not MYPY:
class LoweringRule(Protocol):
def __call__(self, ctx: LoweringRuleContext,
*args: Union[ir.Value, Sequence[ir.Value]],
**kw) -> Sequence[Union[ir.Value, Sequence[ir.Value]]]:
"""Converts a JAX primitive invocation into MLIR."""
else:
LoweringRule = Any
_lowerings: Dict[core.Primitive, LoweringRule] = {}
_platform_specific_lowerings: Dict[str, Dict[core.Primitive, LoweringRule]]
_platform_specific_lowerings = collections.defaultdict(dict)
def register_lowering(prim: core.Primitive, rule: LoweringRule,
platform: Optional[str] = None):
if platform is None:
_lowerings[prim] = rule
else:
# For backward compatibility reasons, we allow rules to be registered
# under "gpu" even though the platforms are now called "cuda" and "rocm".
# TODO(phawkins): fix up users to specify either "cuda" or "rocm" and remove
# this expansion.
for p in xb.expand_platform_alias(platform):
_platform_specific_lowerings[p][prim] = rule
return rule
def _unwrap_singleton_ir_values(x): return x[0] if len(x) == 1 else x
def wrap_singleton_ir_values(x: Union[ir.Value, Sequence[ir.Value]]
) -> Sequence[ir.Value]:
"""Adds a consistent tuples to a mixture of tupled and untuple values."""
return (x,) if isinstance(x, ir.Value) else tuple(x)
def flatten_lowering_ir_args(
xs: Sequence[Union[ir.Value, Sequence[ir.Value]]]
) -> Sequence[Sequence[ir.Value]]:
return util.flatten(map(wrap_singleton_ir_values, xs))
_module_name_regex = re.compile(r"[^\w.-]")
def sharded_aval(aval: core.AbstractValue,
sharding: Optional[XLACompatibleSharding]) -> core.AbstractValue:
"""Returns the new aval sharded based on sharding proto."""
if sharding is None:
return aval
if isinstance(aval, core.AbstractToken):
return aval
if not isinstance(aval, core.ShapedArray):
raise NotImplementedError
return aval.update(sharding.shard_shape(aval.shape))
def eval_dynamic_shape(ctx: LoweringRuleContext,
shape: core.Shape) -> Tuple[Union[int, Value], ...]:
# assert not core.is_constant_shape(shape)
if config.jax_dynamic_shapes:
return tuple(ctx.axis_size_env.get(d, d) for d in shape) # type: ignore
else:
ctx = ctx.replace(
primitive="eval_dynamic_shape",
avals_in=[core.dim_value_aval()] * len(ctx.module_context.shape_poly_state.dim_vars))
res = lower_fun(
partial(core.evaluate_shape, shape, ctx.module_context.shape_poly_state.dim_vars),
multiple_results=True)(ctx, *ctx.dim_var_values)
return util.flatten(res) # type: ignore
class LoweringResult(NamedTuple):
module: ir.Module
keepalive: Optional[Any]
host_callbacks: List[Any]
shape_poly_state: ShapePolyLoweringState
_platforms_with_donation = ["cpu", "cuda", "rocm", "tpu"]
def _to_logical_op_sharding(
aval: core.AbstractValue, sharding: Optional[XLACompatibleSharding],
) -> Optional[xc.HloSharding]:
if sharding is None:
return None
assert isinstance(sharding, sharding_impls.XLACompatibleSharding)
assert isinstance(aval, core.ShapedArray)
return sharding._to_xla_hlo_sharding(aval.ndim)
def lower_jaxpr_to_module(
module_name: str,
jaxpr: core.ClosedJaxpr,
ordered_effects: List[core.Effect],
backend_or_name: Optional[Union[str, xb.XlaBackend]],
platform: str,
axis_context: AxisContext,
name_stack: source_info_util.NameStack,
donated_args: Sequence[bool],
replicated_args: Optional[Sequence[bool]] = None,
arg_shardings: Optional[Sequence[Optional[XLACompatibleSharding]]] = None,
result_shardings: Optional[Sequence[Optional[XLACompatibleSharding]]] = None,
arg_names: Optional[Sequence[Optional[str]]] = None,
result_names: Optional[Sequence[Optional[str]]] = None,
num_replicas: int = 1,
num_partitions: int = 1,
) -> LoweringResult:
"""Lowers a top-level jaxpr to an MLIR module.
Handles the quirks of the argument/return value passing conventions of the
runtime.
"""
platform = xb.canonicalize_platform(platform)
if not xb.is_known_platform(platform):
raise ValueError(f"Unknown platform {platform}")
input_output_aliases = None
in_avals = (jaxpr.in_avals if arg_shardings is None else
map(sharded_aval, jaxpr.in_avals, arg_shardings))
out_avals = (jaxpr.out_avals if result_shardings is None else
map(sharded_aval, jaxpr.out_avals, result_shardings))
if platform in _platforms_with_donation:
input_output_aliases, donated_args = _set_up_aliases(
in_avals, out_avals, donated_args)
unlowerable_effects = lowerable_effects.filter_not_in(jaxpr.effects)
if unlowerable_effects:
raise ValueError(f'Cannot lower jaxpr with effects: {jaxpr.effects}')
if any(donated_args):
unused_donations = [str(a) for a, d in zip(in_avals, donated_args) if d]
msg = "See an explanation at https://jax.readthedocs.io/en/latest/faq.html#buffer-donation."
if platform not in _platforms_with_donation:
msg = f"Donation is not implemented for {platform}.\n{msg}"
warnings.warn(f"Some donated buffers were not usable: {', '.join(unused_donations)}.\n{msg}")
# HLO channels need to start at 1
channel_iter = itertools.count(1)
# Create a keepalives list that will be mutated during the lowering.
keepalives: List[Any] = []
host_callbacks: List[Any] = []
dim_vars: Sequence[str]
if not config.jax_dynamic_shapes:
# Find the dimension variables
all_dim_poly = [d for aval in jaxpr.in_avals if hasattr(aval, "shape")
for d in aval.shape if not core.is_constant_dim(d)]
dim_vars = tuple(sorted(functools.reduce(lambda acc, new: acc.union(new.get_vars()),
all_dim_poly, set())))
else:
dim_vars = ()
arg_op_shardings = (
map(_to_logical_op_sharding, jaxpr.in_avals, arg_shardings)
if arg_shardings is not None else arg_shardings)
result_op_shardings = (
map(_to_logical_op_sharding, jaxpr.out_avals, result_shardings)
if result_shardings is not None else result_shardings)
ctx = ModuleContext(backend_or_name, platform, axis_context, name_stack,
keepalives, channel_iter, host_callbacks,
shape_poly_state=ShapePolyLoweringState(dim_vars))
with ctx.context, ir.Location.unknown(ctx.context):
# Remove module name characters that XLA would alter. This ensures that
# XLA computation preserves the module name.
attrs = ctx.module.operation.attributes
module_name = _module_name_regex.sub("_", module_name)
attrs["sym_name"] = ir.StringAttr.get(module_name)
attrs["mhlo.num_replicas"] = i32_attr(num_replicas)
attrs["mhlo.num_partitions"] = i32_attr(num_partitions)
lower_jaxpr_to_fun(
ctx, "main", jaxpr, ordered_effects, public=True, create_tokens=True,
replace_tokens_with_dummy=True,
num_output_tokens=0,
replicated_args=replicated_args,
arg_shardings=arg_op_shardings,
result_shardings=result_op_shardings,
input_output_aliases=input_output_aliases,
arg_names=arg_names,
result_names=result_names)
try:
if not ctx.module.operation.verify():
module_string = module_to_string(ctx.module)
raise ValueError(
f"Cannot lower jaxpr with verifier errors: {module_string}")
except ir.MLIRError as e:
module_string = module_to_string(ctx.module)
raise ValueError(
f"Cannot lower jaxpr with verifier errors: {module_string}") from e
return LoweringResult(ctx.module, ctx.keepalives, ctx.host_callbacks,
ctx.shape_poly_state)
def module_to_string(module: ir.Module) -> str:
output = io.StringIO()
module.operation.print(file=output, enable_debug_info=True,
print_generic_op_form=False)
return output.getvalue()
def module_to_bytecode(module: ir.Module) -> bytes:
output = io.BytesIO()
module.operation.write_bytecode(file=output)
return output.getvalue()
def _set_up_aliases(avals_in, avals_out, donated_args):
input_output_aliases = [None] * len(avals_in)
# To match-up in-avals to out-avals we only care about the number of
# bytes, so we strip off unrelated aval metadata (eg. the named shape)
strip_metadata = lambda a: a.strip_named_shape().strip_weak_type()
avals_in = map(strip_metadata, avals_in)
avals_out = map(strip_metadata, avals_out)
donations = collections.defaultdict(collections.deque)
for i, (aval, donated) in enumerate(zip(avals_in, donated_args)):
if donated:
donations[aval].append(i)
out_donated_args = list(donated_args)
for i, aval in enumerate(avals_out):
if donations.get(aval, ()):
input_id = donations[aval].popleft()
input_output_aliases[input_id] = i
out_donated_args[input_id] = False
return input_output_aliases, out_donated_args
Token = Sequence[ir.Value]
def token_type() -> Sequence[ir.Type]:
return [hlo.TokenType.get()]
def create_token() -> Token:
return wrap_singleton_ir_values(hlo.CreateTokenOp().result)
class TokenSet:
"""An immutable container of tokens to be used to lower effectful jaxprs. When lowering
effectful jaxprs, we need to thread HLO tokens to sequence them. Each effect
will need its own token that will be threaded in and out of the effectful
primitives. A `TokenSet` encapsulates a set of HLO tokens that will be
used by the lowering rules.
"""
_tokens: typing.OrderedDict[core.Effect, Token]
def __init__(self, *args, **kwargs):
self._tokens = collections.OrderedDict(*args, **kwargs)
def __len__(self):
return len(self._tokens)
def get(self, effect: core.Effect) -> Token:
return self._tokens[effect]
@classmethod
def create(cls, effects: Sequence[core.Effect]) -> TokenSet:
"""Creates a `TokenSet` corresponding to a list of `core.Effect`s."""
tokens = [create_token() for _ in effects]
return TokenSet(zip(effects, tokens))
def items(self) -> Sequence[Tuple[core.Effect, Token]]:
return tuple(self._tokens.items())
def effects(self) -> set[core.Effect]:
return set(self._tokens.keys())
def subset(self, effects: Sequence[core.Effect]) -> TokenSet:
"""Return a subset of the `TokenSet` restricted to a set of `core.Effect`s."""
return TokenSet((eff, self._tokens[eff]) for eff in effects)
def update_tokens(self, tokens: TokenSet) -> TokenSet:
"""Returns a new `TokenSet` with tokens replaced with ones from the input `TokenSet`."""
new_tokens = []
for eff in self.effects():
if eff in tokens._tokens:
new_tokens.append((eff, tokens._tokens[eff]))
else:
new_tokens.append((eff, self._tokens[eff]))
return TokenSet(new_tokens)
def dummy_token_type() -> Sequence[ir.Type]:
return aval_to_ir_types(core.ShapedArray((0,), np.bool_))
def dummy_token() -> Sequence[ir.Value]:
return ir_constants(np.zeros(0, np.bool_))
def lower_jaxpr_to_fun(
ctx: ModuleContext,
name: str,
jaxpr: core.ClosedJaxpr,
effects: Sequence[core.Effect],
*,
create_tokens: bool = False,
public: bool = False,
replace_tokens_with_dummy: bool = False,
replicated_args: Optional[Sequence[bool]] = None,
arg_shardings: Optional[Sequence[Optional[xc.HloSharding]]] = None,
result_shardings: Optional[Sequence[Optional[xc.HloSharding]]] = None,
use_sharding_annotations: bool = True,
input_output_aliases: Optional[Sequence[Optional[int]]] = None,
num_output_tokens: int = 0,
api_name: str = "jit",
arg_names: Optional[Sequence[Optional[str]]] = None,
result_names: Optional[Sequence[Optional[str]]] = None,
) -> func_dialect.FuncOp:
"""Lowers jaxpr and its callees to an IR function.
Assumes that an MLIR context, location, and insertion point are set.
Args:
ctx: the lowering context.
name: the function name. The name will be uniquified by the symbol table,
so it is ok to use the same name multiple times.
jaxpr: the jaxpr to lower.
effects: a sequence of `core.Effect`s corresponding to an ordering of tokens
that will be created in or used by the lowered function.
create_tokens: if true, the HLO will create tokens and ignore dummy input tokens.
public: if true, the function's visibility is set to "public".
replace_tokens_with_dummy: if true, token arguments/return values are
replaced with bool arrays of size [0].
replicated_args: if present, annotates arguments as replicated.
arg_shardings: sharding annotations for each argument (optional).
result_shardings: sharding annotations for each result (optional).
use_sharding_annotations: if True, use "mhlo.sharding" annotations on
parameters and return values to express sharding. If False, use
hlo.custom_call operators with sharding annotations.
TODO(b/228598865): remove this option when "mhlo.sharding" annotations are
propagated on non-entry functions during MLIR->HLO conversion.
input_output_aliases: optional sequence that maps argument numbers to the
corresponding output that should alias them.
api_name: The name of the higher level primitive which should show up in the
name stack.
Returns the name of the function.
"""
def aval_to_types(aval):
if replace_tokens_with_dummy and aval is core.abstract_token:
aval = core.ShapedArray((), np.dtype(np.bool_))
return aval_to_ir_types(aval)
num_dim_vars = len(ctx.shape_poly_state.dim_vars)
dim_var_avals = [core.ShapedArray((), dtypes.canonicalize_dtype(np.int64))] * num_dim_vars
dim_var_types = map(aval_to_types, dim_var_avals)
# Function inputs: *dim_var_values, *tokens, *actual_inputs
input_types = map(aval_to_types, jaxpr.in_avals)
output_types = map(aval_to_types, jaxpr.out_avals)
num_tokens = len(effects)
if create_tokens:
# If we create the tokens they won't be inputs to the MLIR function.
token_types = [dummy_token_type() for _ in effects]
output_token_types = [dummy_token_type() for _ in range(num_output_tokens)]
else:
# If we aren't creating tokens they will be the initial inputs to the
# MLIR function.
output_token_types = []
token_types = [token_type() for _ in effects]
token_avals = [core.AbstractToken] * len(effects)
input_avals = dim_var_avals + token_avals + jaxpr.in_avals
input_types = [*dim_var_types, *token_types, *input_types]
output_avals = [core.AbstractToken] * (len(output_token_types) + len(token_types)) + jaxpr.out_avals
output_types = [*output_token_types, *token_types, *output_types]
if input_output_aliases is not None:
token_input_output_aliases = [None] * (num_dim_vars + num_tokens)
input_output_aliases = [*token_input_output_aliases, *input_output_aliases]
# Update the existing aliases to account for the new output values
input_output_aliases = [None if a is None
else a + num_output_tokens + num_tokens
for a in input_output_aliases]
if arg_shardings is not None:
token_shardings = [None] * (num_dim_vars + num_tokens)
arg_shardings = [*token_shardings, *arg_shardings]
if result_shardings is not None:
token_shardings = [None] * (num_tokens + num_output_tokens)
result_shardings = [*token_shardings, *result_shardings]
if replicated_args is not None:
token_replicated_args = [False] * (num_dim_vars + num_tokens)
replicated_args = [*token_replicated_args, *replicated_args]
flat_input_types = util.flatten(input_types)
flat_output_types = util.flatten(output_types)
ftype = ir.FunctionType.get(flat_input_types, flat_output_types)
func_op = func_dialect.FuncOp(name, ftype, ip=ctx.ip)
func_op.attributes["sym_visibility"] = ir.StringAttr.get(
"public" if public else "private")
ctx.symbol_table.insert(func_op)
ir_arg_shardings = None
if arg_shardings is not None:
in_avals = [None] * (num_dim_vars + num_tokens) + list(jaxpr.in_avals)
ir_arg_shardings = util.flatten(
[[_to_physical_op_sharding(a, s)] * len(types)
for a, s, types in zip(in_avals, arg_shardings, input_types)])
del in_avals
ir_result_shardings = None
if result_shardings is not None:
out_avals = [None] * (num_tokens + num_output_tokens) + list(jaxpr.out_avals)
ir_result_shardings = util.flatten(
[[_to_physical_op_sharding(a, s)] * len(types)
for a, s, types in zip(out_avals, result_shardings, output_types)])
del out_avals
if (
replicated_args is not None
or ir_arg_shardings is not None
or input_output_aliases is not None
or arg_names is not None
or num_tokens > 0
):
arg_attrs: List[Dict[str, ir.Attribute]] = [
{} for _ in range(len(flat_input_types))]
if replicated_args is not None:
replicated_ir_args = [[replicated] * len(types) for replicated, types
in zip(replicated_args, input_types)]
for attrs, replicated in zip(arg_attrs, util.flatten(replicated_ir_args)):
if replicated:
attrs["mhlo.is_same_data_across_replicas"] = ir.UnitAttr.get()
if use_sharding_annotations and ir_arg_shardings is not None:
for attrs, sharding in zip(arg_attrs, ir_arg_shardings):
if sharding is not None:
attrs["mhlo.sharding"] = get_sharding_attr(sharding)
if input_output_aliases is not None:
output_ids = util.unflatten(list(range(len(flat_output_types))),
map(len, output_types))
aliases: List[Optional[int]] = []
for types, alias in zip(input_types, input_output_aliases):
if alias is None:
aliases.extend([None] * len(types))
else:
aliases.extend(output_ids[alias])
for attrs, alias in zip(arg_attrs, aliases):
if alias is not None:
attrs["tf.aliasing_output"] = i32_attr(alias)
if num_tokens > 0:
token_arg_attrs = arg_attrs[num_dim_vars:num_tokens]
for attrs in token_arg_attrs:
attrs["jax.token"] = ir.BoolAttr.get(True)
if arg_names:
named_arg_attrs = arg_attrs[num_dim_vars + num_tokens:]
for attrs, name_ in zip(named_arg_attrs, arg_names):
if name_:
attrs['jax.arg_info'] = ir.StringAttr.get(name_)
func_op.arg_attrs = ir.ArrayAttr.get(
[ir.DictAttr.get(attrs) for attrs in arg_attrs])
result_attrs: List[Dict[str, ir.Attribute]] = [
{} for _ in range(len(flat_output_types))]
if num_tokens > 0:
token_result_attrs = result_attrs[:num_tokens]
for attrs in token_result_attrs:
attrs["jax.token"] = ir.BoolAttr.get(True)
if result_names:
named_result_attrs = result_attrs[num_tokens:]
if len(named_result_attrs) == len(result_names):
for attrs, name_ in zip(named_result_attrs, result_names):
attrs['jax.result_info'] = ir.StringAttr.get(name_)
if use_sharding_annotations and ir_result_shardings is not None:
for attrs, sharding in zip(result_attrs, ir_result_shardings):
if sharding is not None:
attrs['mhlo.sharding'] = get_sharding_attr(sharding)
func_op.result_attrs = ir.ArrayAttr.get(
[ir.DictAttr.get(attrs) for attrs in result_attrs])
entry_block = func_op.add_entry_block()
with ir.InsertionPoint(entry_block):
flat_args = entry_block.arguments
# We separate out the dimension variable inputs, the token inputs and
# the regular inputs. The dimension variables and token inputs
# will be passed to `jaxpr_subcomp` separately from the `args`.
dim_var_values, _, _ = util.split_list(flat_args, [num_dim_vars, num_tokens])
# A lowering context just for function body entry/exit code.
entry_lowering_ctx = LoweringRuleContext(
ctx, None, [], None, TokenSet.create([]), None, None, dim_var_values)
if not use_sharding_annotations and ir_arg_shardings is not None:
flat_args = [
a if s is None else wrap_with_sharding_op(entry_lowering_ctx, a, a_aval, s)
for a, s, a_aval in zip(flat_args, ir_arg_shardings, input_avals)]
_, token_args, unflattened_args = util.split_list(util.unflatten(flat_args, map(len, input_types)),
[num_dim_vars, num_tokens])
if create_tokens:
tokens_in = TokenSet.create(effects)
else:
tokens_in = TokenSet(zip(effects, token_args))
args: List[List[ir.Value]] = []
for aval, arg in zip(jaxpr.in_avals, unflattened_args):
if replace_tokens_with_dummy and aval is core.abstract_token:
args.append(hlo.CreateTokenOp().results)
else:
args.append(arg)
callee_name_stack = ctx.name_stack.extend(util.wrap_name(name, api_name))
out_vals, tokens_out = jaxpr_subcomp(ctx.replace(name_stack=callee_name_stack),
jaxpr.jaxpr, tokens_in, map(ir_constants, jaxpr.consts),
*args, dim_var_values=dim_var_values)
outs = []
if create_tokens:
for _ in range(num_output_tokens):
outs.append(dummy_token())
for _ in effects:
outs.append(dummy_token())
else:
for eff in effects:
outs.append(tokens_out.get(eff))
for aval, out in zip(jaxpr.out_avals, out_vals):
if replace_tokens_with_dummy and aval is core.abstract_token:
outs.append(ir_constants(np.zeros((), np.bool_)))
else:
outs.append(out)
flat_outputs = util.flatten(outs)
if not use_sharding_annotations and ir_result_shardings is not None:
flat_outputs = [
o if s is None else wrap_with_sharding_op(entry_lowering_ctx, o, o_aval, s)
for o, s, o_aval in zip(flat_outputs, ir_result_shardings, output_avals)]
func_dialect.ReturnOp(flat_outputs)
return func_op
def _to_physical_op_sharding(
aval: Optional[core.AbstractValue], sharding: Optional[xc.HloSharding]
) -> Optional[xc.OpSharding]:
if (isinstance(aval, core.ShapedArray) and dtypes.is_opaque_dtype(aval.dtype)
and sharding is not None):
return aval.dtype._rules.physical_hlo_sharding(aval, sharding).to_proto()
return None if sharding is None else sharding.to_proto() # type: ignore
def _emit_lowering_rule_as_fun(lowering_rule,
ctx: LoweringRuleContext) -> func_dialect.FuncOp:
"""Emits the contents of a lowering rule as a private function."""
num_dim_vars = len(ctx.module_context.shape_poly_state.dim_vars)
# TODO(necula) maybe only pass the dim_vars if they are needed?
dim_var_types = map(aval_to_ir_types, [core.ShapedArray((), dtypes.canonicalize_dtype(np.int64))] * num_dim_vars)
input_types = map(aval_to_ir_types, ctx.avals_in)
output_types = map(aval_to_ir_types, ctx.avals_out)
effs = list(ctx.tokens_in.effects())
token_types = [token_type() for _ in effs]
input_types = [*dim_var_types, *token_types, *input_types]
output_types = [*token_types, *output_types]
flat_input_types = util.flatten(input_types)
flat_output_types = util.flatten(output_types)
ftype = ir.FunctionType.get(flat_input_types, flat_output_types)
assert ctx.primitive is not None
func_op = func_dialect.FuncOp(ctx.primitive.name, ftype,
ip=ctx.module_context.ip)
func_op.attributes["sym_visibility"] = ir.StringAttr.get("private")
ctx.module_context.symbol_table.insert(func_op)
entry_block = func_op.add_entry_block()
with ir.InsertionPoint(entry_block):
unflattened_args = util.unflatten(entry_block.arguments,
map(len, input_types))
dim_var_values, token_args, unflattened_args = util.split_list(unflattened_args, [num_dim_vars, len(ctx.tokens_in)])
sub_ctx = ctx.replace(tokens_in=TokenSet(zip(effs, token_args)),
dim_var_values=dim_var_values)
outs = lowering_rule(sub_ctx, *_unwrap_singleton_ir_values(unflattened_args))
if sub_ctx.tokens_out:
outs = [*[sub_ctx.tokens_out.get(eff) for eff in effs], outs]
func_dialect.ReturnOp(util.flatten(map(wrap_singleton_ir_values, outs)))
return func_op
def jaxpr_subcomp(ctx: ModuleContext, jaxpr: core.Jaxpr,
tokens: TokenSet,
consts: Sequence[Sequence[ir.Value]],
*args: Sequence[ir.Value],
dim_var_values: Sequence[ir.Value]
) -> Tuple[Sequence[Sequence[ir.Value]], TokenSet]:
"""Lowers a jaxpr into MLIR, inlined into an existing function.
Assumes that an MLIR context, location, and insertion point are set.
dim_var_values: the list of dimension variables values in the current
IR function, in the order of ctx.shape_poly_state.dim_vars.
"""
assert ctx.platform != "gpu"
def read(v: core.Atom) -> Sequence[ir.Value]:
if type(v) is core.Literal:
return ir_constants(v.val, canonicalize_types=True)
else:
assert isinstance(v, core.Var)
return env[v]
def aval(v: core.Atom) -> core.AbstractValue:
if type(v) is core.Literal:
return xla.abstractify(v.val)
else:
return v.aval
def write(v: core.Var, node: Sequence[ir.Value]):
assert node is not None
env[v] = tuple(node)
env: Dict[core.Var, Tuple[ir.Value, ...]] = {}
assert len(args) == len(jaxpr.invars), (jaxpr, args)
assert len(consts) == len(jaxpr.constvars), (jaxpr, consts)
assert all(isinstance(v, ir.Value) for vs in consts for v in vs), consts
assert len(ctx.shape_poly_state.dim_vars) == len(dim_var_values), (ctx.shape_poly_state.dim_vars, dim_var_values)
map(write, jaxpr.constvars, consts)
map(write, jaxpr.invars, args)
for eqn in jaxpr.eqns:
in_nodes = map(read, eqn.invars)
assert isinstance(ctx.name_stack, source_info_util.NameStack), type(ctx.name_stack)
source_info = eqn.source_info.replace(
name_stack=ctx.name_stack + eqn.source_info.name_stack)
loc = _source_info_to_location(eqn.primitive, eqn.params, source_info,
ctx.name_stack)
with source_info_util.user_context(eqn.source_info.traceback), loc:
if eqn.primitive in _platform_specific_lowerings[ctx.platform]:
rule = _platform_specific_lowerings[ctx.platform][eqn.primitive]
elif eqn.primitive in xla._backend_specific_translations[ctx.platform]:
rule = xla_fallback_lowering(eqn.primitive)
elif eqn.primitive in _lowerings:
rule = _lowerings[eqn.primitive]
elif eqn.primitive in xla._translations:
rule = xla_fallback_lowering(eqn.primitive)
else:
raise NotImplementedError(
f"MLIR translation rule for primitive '{eqn.primitive.name}' not "
f"found for platform {ctx.platform}")
eqn_ctx = ctx.replace(name_stack=source_info.name_stack)
effects = list(effects_lib.ordered_effects.filter_in(eqn.effects))
tokens_in = tokens.subset(effects)
avals_in = map(aval, eqn.invars)
rule_ctx = LoweringRuleContext(
module_context=eqn_ctx, primitive=eqn.primitive, avals_in=avals_in,
avals_out=map(aval, eqn.outvars), tokens_in=tokens_in,
tokens_out=None, dim_var_values=dim_var_values)
if config.jax_dynamic_shapes:
axis_size_env = {d: read(d)[0]
for a in avals_in if type(a) is core.DShapedArray
for d in a.shape if type(d) is core.Var}
rule_ctx = rule_ctx.replace(axis_size_env=axis_size_env)
ans = rule(rule_ctx, *map(_unwrap_singleton_ir_values, in_nodes),
**eqn.params)
if effects:
# If there were ordered effects in the primitive, there should be output
# tokens we need for subsequent ordered effects.
tokens_out = rule_ctx.tokens_out
if tokens_out is None:
raise ValueError(
f'Lowering rule for `{eqn.primitive}` needs to set `tokens_out` '
f'because it has effects: {eqn.effects}.')
if tokens_out.effects() != tokens_in.effects():
raise ValueError(
f'Lowering rule for `{eqn.primitive}` '
'returns incorrect set of output tokens. '
f'Expected: {tuple(tokens_in.effects())} vs. Actual: {tuple(tokens_out.effects())}')
tokens = tokens.update_tokens(tokens_out)
try:
out_nodes = tuple(map(wrap_singleton_ir_values, ans))
except TypeError as e:
raise ValueError("Output of translation rule must be iterable: "
f"{eqn}, got output {ans}") from e
assert all(isinstance(v, tuple) for v in out_nodes), (ans, eqn)
assert all(isinstance(v, ir.Value) for w in out_nodes for v in w), (
ans, "lowering function returned a bad output", eqn)
assert len(ans) == len(eqn.outvars), (ans, eqn)
map(write, eqn.outvars, out_nodes)
return map(read, jaxpr.outvars), tokens
def _ir_consts(consts):
unique_consts = {id(const): const for const in consts}
ir_consts = {
id_: ir_constants(const) for id_, const in unique_consts.items()}
return [ir_consts[id(const)] for const in consts]
def lower_fun(fun: Callable, multiple_results: bool = True) -> Callable:
"""Converts a traceable JAX function `fun` into a lowering rule.
The returned function does not use `avals_out`, so callers may pass any value
as `avals_out`."""
def f_lowered(ctx, *args, **params):
f = fun if multiple_results else lambda *args, **kw: (fun(*args, **kw),)
wrapped_fun = lu.wrap_init(f, params)
if config.jax_dynamic_shapes:
# We might be applying this function to arguments with dynamic shapes,
# i.e. there might be Vars in the shape tuples of ctx.avals_in. In that
# case, we need to form a jaxpr with leading binders for those axis size
# arguments (by computing an InputType and using trace_to_jaxpr_dynamic2),
# and we need to call jaxpr_subcomp with these arguments made explicit.
args = (*ctx.axis_size_env.values(), *args)
idx = {d: core.DBIdx(i) for i, d in enumerate(ctx.axis_size_env)}
i32_aval = core.ShapedArray((), np.dtype('int32'))
implicit_args = [(i32_aval, False)] * len(ctx.axis_size_env)
explicit_args = [(a.update(shape=tuple(idx.get(d, d) for d in a.shape))
if type(a) is core.DShapedArray else a, True)
for a in ctx.avals_in]
wrapped_fun = lu.annotate(wrapped_fun, (*implicit_args, *explicit_args))
jaxpr, _, consts = pe.trace_to_jaxpr_dynamic2(wrapped_fun)
else:
jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(wrapped_fun, ctx.avals_in)
# TODO(frostig,mattjj): check ctx.avals_out against jaxpr avals out?
out, tokens = jaxpr_subcomp(
ctx.module_context, jaxpr, ctx.tokens_in, _ir_consts(consts),
*map(wrap_singleton_ir_values, args), dim_var_values=ctx.dim_var_values)
ctx.set_tokens_out(tokens)
return out
return f_lowered
def _lower_jaxpr_to_fun_cached(ctx, fn_name, call_jaxpr, effects,
arg_names=None, result_names=None):
if not call_jaxpr.consts and arg_names is result_names is None:
# Cacheable.
key = (fn_name, call_jaxpr.jaxpr, tuple(effects))
try:
func_op = ctx.cached_call_jaxpr_lowerings[key]
except KeyError:
func_op = lower_jaxpr_to_fun(
ctx, fn_name, call_jaxpr, effects, arg_names=arg_names,
result_names=result_names)
ctx.cached_call_jaxpr_lowerings[key] = func_op
else:
func_op = lower_jaxpr_to_fun(
ctx, fn_name, call_jaxpr, effects, arg_names=arg_names,
result_names=result_names)
return func_op
def _call_lowering(fn_name, stack_name, call_jaxpr, backend, ctx, avals_in,
avals_out, tokens_in, *args,
dim_var_values: Sequence[ir.Value],
arg_names=None, result_names=None):
if isinstance(call_jaxpr, core.Jaxpr):
call_jaxpr = core.ClosedJaxpr(call_jaxpr, ())
xla.check_backend_matches(backend, ctx.platform)
effects = list(tokens_in.effects())
output_types = map(aval_to_ir_types, avals_out)
output_types = [token_type()] * len(effects) + output_types
flat_output_types = util.flatten(output_types)
symbol_name = _lower_jaxpr_to_fun_cached(
ctx, fn_name, call_jaxpr, effects, arg_names=arg_names,
result_names=result_names).name.value
tokens = [tokens_in.get(eff) for eff in effects]
args = tuple([*dim_var_values, *tokens, *args])
call = func_dialect.CallOp(flat_output_types,
ir.FlatSymbolRefAttr.get(symbol_name),
flatten_lowering_ir_args(args))
out_nodes = util.unflatten(call.results, map(len, output_types))
tokens, out_nodes = util.split_list(out_nodes, [len(effects)])
tokens_out = tokens_in.update_tokens(TokenSet(zip(effects, tokens)))
return out_nodes, tokens_out
def core_call_lowering(ctx, *args, name, backend=None, call_jaxpr):
out_nodes, tokens = _call_lowering(
name, name, call_jaxpr, backend, ctx.module_context,
ctx.avals_in, ctx.avals_out, ctx.tokens_in, *args,
dim_var_values=ctx.dim_var_values)
ctx.set_tokens_out(tokens)
return out_nodes
register_lowering(core.call_p, partial(core_call_lowering, name="core_call"))
register_lowering(core.closed_call_p,
partial(core_call_lowering, name="core_closed_call"))
def broadcast_in_dim(ctx: LoweringRuleContext, op, aval_out: core.AbstractValue, *,
broadcast_dimensions) -> ir.Value:
# broadcast_dimension[i] is the axis of the result where the axis i of
# op is broadcast.
# Lower a possibly-dynamic broadcast_in_dim
if dtypes.is_opaque_dtype(aval_out.dtype): # type: ignore
elt_shape = aval_out.dtype._rules.physical_element_aval( # type: ignore
aval_out.dtype).shape # type: ignore
trailing_dims = [aval_out.ndim + i for i in range(len(elt_shape))] # type: ignore
broadcast_dimensions = [*broadcast_dimensions, *trailing_dims]
physical_aval_out = core.physical_aval(aval_out)
return broadcast_in_dim(
ctx, op, physical_aval_out, broadcast_dimensions=broadcast_dimensions)
else:
if not core.is_constant_shape(aval_out.shape): # type: ignore
shape = eval_dynamic_shape(ctx, aval_out.shape) # type: ignore
return hlo.DynamicBroadcastInDimOp(
aval_to_ir_type(aval_out), op,
shape_tensor(shape),
dense_int_elements(broadcast_dimensions),
).result
else:
assert all(d != ir.ShapedType.get_dynamic_size()
for d in aval_out.shape), aval_out # type: ignore
return hlo.BroadcastInDimOp(
aval_to_ir_type(aval_out), op,
dense_int_elements(broadcast_dimensions)).result
def multi_broadcast_in_dim(ctx: LoweringRuleContext,
ops: Sequence[ir.Value],
ops_avals: Sequence[core.AbstractValue],
out_shape: core.Shape) -> Sequence[ir.Value]:
"""Broadcasts multiple ops to the out_shape."""
out = []
for op, op_aval in zip(ops, ops_avals):
op_aval_shape = op_aval.shape # type: ignore
if core.symbolic_equal_shape(op_aval_shape, out_shape): # type: ignore
out.append(op)
else:
assert len(op_aval_shape) <= len(out_shape), (op_aval_shape, out_shape)
broadcast_dimensions = list(range(len(out_shape) - len(op_aval_shape), len(out_shape)))
out.append(broadcast_in_dim(ctx, op,
core.ShapedArray(out_shape, op_aval.dtype), # type: ignore
broadcast_dimensions=broadcast_dimensions))
return out
def reshape(ctx: LoweringRuleContext, op, aval_out: core.AbstractValue) -> ir.Value:
aval_out = core.physical_aval(aval_out)
if not core.is_constant_shape(aval_out.shape): # type: ignore
shape = eval_dynamic_shape(ctx, aval_out.shape) # type: ignore
return hlo.DynamicReshapeOp(
aval_to_ir_type(aval_out), op,
shape_tensor(shape),
).result
else:
return hlo.ReshapeOp(aval_to_ir_type(aval_out), op).result
def slice_op(ctx: LoweringRuleContext, x, aval_out, *,
start_indices, limit_indices, strides) -> ir.Value:
if dtypes.is_opaque_dtype(aval_out.dtype):
elt_shape = aval_out.dtype._rules.physical_element_aval(
aval_out.dtype).shape
trailing_zeros = [0] * len(elt_shape)
trailing_ones = [1] * len(elt_shape)
start_indices = (*start_indices, *trailing_zeros)
limit_indices = (*limit_indices, *elt_shape)
strides = (*strides, *trailing_ones)
physical_aval_out = core.physical_aval(aval_out)
return slice_op(ctx, x, physical_aval_out, start_indices=start_indices,
limit_indices=limit_indices, strides=strides)
else:
if any(not core.is_constant_shape(s) for s in (start_indices, limit_indices, strides)):
start_indices = eval_dynamic_shape(ctx, start_indices)
limit_indices = eval_dynamic_shape(ctx, limit_indices)
strides = eval_dynamic_shape(ctx, strides)
return hlo.RealDynamicSliceOp(aval_to_ir_type(aval_out),
x,
shape_tensor(start_indices),
shape_tensor(limit_indices),
shape_tensor(strides)).result
else:
return hlo.SliceOp(x,
dense_int_elements(start_indices),
dense_int_elements(limit_indices),
dense_int_elements(strides)).result
def dynamic_slice(ctx: LoweringRuleContext, aval_out, x, *,
start_indices) -> ir.Value:
if dtypes.is_opaque_dtype(aval_out.dtype):
elt_shape = aval_out.dtype._rules.physical_element_aval(
aval_out.dtype).shape
index_avals = ctx.avals_in[1:]
dtype = dtypes.canonicalize_dtype(
index_avals[0].dtype if index_avals else 'int64') # type: ignore
trailing_zeros = [ir_constant(np.array(0, dtype))] * len(elt_shape)
start_indices = (*start_indices, *trailing_zeros)
physical_aval_out = core.physical_aval(aval_out)
return dynamic_slice(ctx, physical_aval_out, x,
start_indices=start_indices)
else:
slice_sizes = aval_out.shape
if not core.is_constant_shape(slice_sizes):
slice_sizes = eval_dynamic_shape(ctx, slice_sizes)
return hlo.RealDynamicSliceOp(
aval_to_ir_type(aval_out), x,
shape_tensor(start_indices),
hlo.AddOp(shape_tensor(start_indices),
shape_tensor(slice_sizes)).result,
shape_tensor([1] * len(slice_sizes))
).result
else:
return hlo.DynamicSliceOp(x, start_indices,
dense_int_elements(slice_sizes)).result
def dynamic_update_slice(ctx: LoweringRuleContext, aval_out, x, update, *,
start_indices) -> ir.Value:
if dtypes.is_opaque_dtype(aval_out.dtype):
elt_shape = aval_out.dtype._rules.physical_element_aval(
aval_out.dtype).shape
index_avals = ctx.avals_in[2:]
dtype = dtypes.canonicalize_dtype(
index_avals[0].dtype if index_avals else 'int64') # type: ignore
zeros = [ir_constant(np.array(0, dtype=dtype))] * len(elt_shape)
start_indices = (*start_indices, *zeros)
physical_aval_out = core.physical_aval(aval_out)
return dynamic_update_slice(ctx, physical_aval_out, x, update,
start_indices=start_indices)
else:
# TODO(necula): handle dynamic shapes
return hlo.DynamicUpdateSliceOp(x, update, start_indices).result
def pad(ctx: LoweringRuleContext, aval_out,
x, padding_value,
padding_low, padding_high, padding_interior) -> ir.Value:
if all(core.is_constant_shape(s) for s in (padding_low,
padding_high, padding_interior)):
return hlo.PadOp(x, padding_value,
dense_int_elements(padding_low),
dense_int_elements(padding_high),
dense_int_elements(padding_interior)).result
else:
padding_low = shape_tensor(eval_dynamic_shape(ctx, padding_low))
padding_high = shape_tensor(eval_dynamic_shape(ctx, padding_high))
padding_interior = shape_tensor(eval_dynamic_shape(ctx, padding_interior))
return hlo.DynamicPadOp(
aval_to_ir_type(aval_out),
x, padding_value, padding_low, padding_high, padding_interior).result
def iota(ctx: LoweringRuleContext, aval_out, *, dimension: int):
if not core.is_constant_shape(aval_out.shape):
shape = eval_dynamic_shape(ctx, aval_out.shape)
return hlo.DynamicIotaOp(
aval_to_ir_type(aval_out),
shape_tensor(shape),
i64_attr(dimension),
).result
else:
return hlo.IotaOp(aval_to_ir_type(aval_out),
i64_attr(dimension)).result
def full_like_aval(ctx: LoweringRuleContext, value, aval: core.ShapedArray) -> ir.Value:
"""Returns an IR constant shaped full of `value` shaped like `aval`."""
zero = ir_constant(np.array(value, aval.dtype))
return broadcast_in_dim(ctx, zero, aval, broadcast_dimensions=())
def zeros_like_lowering(ctx, x):
aval, = ctx.avals_in
assert isinstance(aval, core.ShapedArray), aval
return [full_like_aval(ctx, 0, aval)]
register_lowering(ad_util.zeros_like_p, zeros_like_lowering)
def add_jaxvals_lowering(ctx, x, y):
return hlo.AddOp(x, y).results
register_lowering(ad_util.add_jaxvals_p, add_jaxvals_lowering)
register_lowering(ad_util.stop_gradient_p, lambda ctx, x: [x])
def compare_hlo(x, y, direction: str, comparison_type: Optional[str] = None):
"""Creates CompareOp."""
if comparison_type is None:
elem_type = ir.RankedTensorType(x.type).element_type
if ir.IntegerType.isinstance(elem_type):
comparison_type = ("UNSIGNED" if ir.IntegerType.is_unsigned(elem_type)
else "SIGNED")
else:
comparison_type = "FLOAT"
return hlo.CompareOp(
x,
y,
hlo.ComparisonDirectionAttr.get(direction),
compare_type=hlo.ComparisonTypeAttr.get(comparison_type))
def _minmax_hlo(op, cmp, x, y):
"""Min/max that compares complex values lexicographically as pairs."""
tensor_type = ir.RankedTensorType(x.type)
if ir.ComplexType.isinstance(tensor_type.element_type):
rx = hlo.RealOp(x).result
ry = hlo.RealOp(y).result
real_eq = compare_hlo(rx, ry, "EQ", "FLOAT")
real_cmp = compare_hlo(rx, ry, cmp, "FLOAT")
imag_cmp = compare_hlo(
hlo.ImagOp(x).result,
hlo.ImagOp(y).result, cmp, "FLOAT")
which = hlo.SelectOp(real_eq, imag_cmp, real_cmp).result
return hlo.SelectOp(which, x, y)
else:
return op(x, y)
min_hlo = partial(_minmax_hlo, hlo.MinOp, "LT")
max_hlo = partial(_minmax_hlo, hlo.MaxOp, "GT")
def convert_hlo(ctx: LoweringRuleContext, x, aval_in, aval_out):
"""Variant of convert that has HLO semantics.
In particular, treat casts to boolean as x != 0, rather than truncating
integer values (b/209440332)."""
if (not dtypes.is_opaque_dtype(aval_out.dtype) and
aval_out.dtype == np.dtype(np.bool_)):
if dtypes.issubdtype(aval_in.dtype, np.inexact):
compare_type = "FLOAT"
elif dtypes.issubdtype(aval_in.dtype, np.signedinteger):
compare_type = "SIGNED"
else:
compare_type = "UNSIGNED"
return compare_hlo(x, full_like_aval(ctx, 0, aval_in), "NE",
compare_type).result
return hlo.ConvertOp(aval_to_ir_type(aval_out), x).result
def _wrap_with_spmd_op(name: str,
ctx: LoweringRuleContext,
x: ir.Value,
aval_out: core.AbstractValue,
sharding_proto: xc.OpSharding,
unspecified_dims: Optional[Set[int]] = None):
# unspecified_dims indicate dimensions whose shardings are not specified and
# XLA sharding propagation can change them.
if unspecified_dims:
backend_config = "unspecified_dims=[" + ",".join(
[str(i) for i in sorted(unspecified_dims)]) + "]"
else:
backend_config = ""
result_type = aval_to_ir_type(aval_out)
out_shape = core.physical_aval(aval_out).shape # type: ignore
if core.is_constant_shape(out_shape):
result_shapes = None
else:
result_shapes = [shape_tensor(eval_dynamic_shape(ctx, out_shape))]
op = custom_call(name, [result_type], [x],
backend_config=backend_config,
has_side_effect=False,
api_version=1,
result_shapes=result_shapes)
set_sharding(op, sharding_proto)
return op.result
wrap_with_sharding_op = partial(_wrap_with_spmd_op, "Sharding")
wrap_with_full_to_shard_op = partial(_wrap_with_spmd_op, "SPMDFullToShardShape")
wrap_with_shard_to_full_op = partial(_wrap_with_spmd_op, "SPMDShardToFullShape")
def set_sharding(op, sharding_proto: xc.OpSharding):
op.attributes["mhlo.sharding"] = get_sharding_attr(sharding_proto)
def get_sharding_attr(sharding_proto: xc.OpSharding):
# If there are very large numbers of devices, use the proto representation.
# The MHLO to HLO conversion supports both, and the proto representation is
# more compact.
if len(sharding_proto.tile_assignment_devices) > 100:
return ir.StringAttr.get(sharding_proto.SerializeToString())
else:
return ir.StringAttr.get(repr(xc.HloSharding.from_proto(sharding_proto)))
# MLIR lowerings for lax primitives
def cache_lowering(f):
"""Decorator that causes the contents of a lowering rule to be reused.
The lowering will be emitted out-of-line in a separate function, together with
a call to that function. If the same primitive is called with the same shapes
and parameters, a new call to the original function will be added, without
emitting a new function.
"""
@functools.wraps(f)
def cached_lowering(ctx, *args, **params):
assert ctx.primitive is not None
key = (ctx.primitive, tuple(ctx.avals_in), tuple(ctx.avals_out),
tuple(params.items()))
try:
func = ctx.module_context.cached_primitive_lowerings.get(key)
except TypeError:
# If the parameters aren't hashable, give up on caching.
# TODO(phawkins): switch to requiring hashability, when XLA fallback
# computations have been ported to MLIR.
return f(ctx, *args, **params)
if func is None:
func = _emit_lowering_rule_as_fun(partial(f, **params), ctx)
ctx.module_context.cached_primitive_lowerings[key] = func
output_types = map(aval_to_ir_types, ctx.avals_out)
args = tuple(ctx.dim_var_values) + args
flat_output_types = util.flatten(output_types)
call = func_dialect.CallOp(flat_output_types,
ir.FlatSymbolRefAttr.get(func.name.value),
flatten_lowering_ir_args(args))
return util.unflatten(call.results, map(len, output_types))
return cached_lowering
def xla_computation_to_mlir_module(xla_computation: xc.XlaComputation
) -> ir.Module:
module_str = xc._xla.mlir.xla_computation_to_mlir_module(xla_computation)
return ir.Module.parse(module_str)
def merge_mlir_modules(dst_module: ir.Module,
sym_name: str,
src_module: ir.Module) -> str:
"""Returns the name of src_module's main() function, after renaming."""
callee_name = None
assert dst_module.context == src_module.context
dst_symtab = ir.SymbolTable(dst_module.operation)
n = len(dst_module.body.operations)
for op in src_module.body.operations:
dst_module.body.append(op)
ops = list(dst_module.body.operations)[n:]
for op in ops:
op = typing.cast(func_dialect.FuncOp, op)
old_name = op.name.value
if op.name.value == "main":
dst_symtab.set_symbol_name(op, sym_name)
op.attributes["sym_visibility"] = ir.StringAttr.get("private")
callee_name = ir.StringAttr(dst_symtab.insert(op)).value
new_name = callee_name
else:
new_name = ir.StringAttr(dst_symtab.insert(op)).value
# Replace references to the symbol with the new name
for other_op in ops:
dst_symtab.replace_all_symbol_uses(
old_name, new_name, other_op.operation)
assert callee_name is not None
return callee_name
def xla_fallback_lowering(prim: core.Primitive):
@cache_lowering
def fallback(ctx: LoweringRuleContext, *args, **params):
module_ctx = ctx.module_context
axis_ctx = module_ctx.axis_context
if isinstance(axis_ctx, sharding_impls.SPMDAxisContext):
axis_env = axis_ctx.unsafe_axis_env
else:
axis_env = module_ctx.axis_env
if any(hasattr(a, "shape") and
not core.is_constant_shape(a.shape) for a in (ctx.avals_in + ctx.avals_out)):
raise NotImplementedError(
f"Shape polymorphism for xla_fallback_lowering is not implemented ({ctx.primitive}); b/261682623")
xla_computation = xla.primitive_subcomputation(
module_ctx.platform, axis_env, prim, ctx.avals_in,
ctx.avals_out, **params)
xla_module = xla_computation_to_mlir_module(xla_computation)
callee_name = merge_mlir_modules(
module_ctx.module, f"xla_fallback_{prim.name}", xla_module)
output_types = map(aval_to_ir_types, ctx.avals_out)
flat_output_types = util.flatten(output_types)
output_type = (ir.TupleType.get_tuple(flat_output_types)
if prim.multiple_results else flat_output_types[0])
call = func_dialect.CallOp([output_type],
ir.FlatSymbolRefAttr.get(callee_name),
flatten_lowering_ir_args(args)).result
if not prim.multiple_results:
return [call]
flat_results = [hlo.GetTupleElementOp(call, i32_attr(i)).result
for i in range(len(flat_output_types))]
return util.unflatten(flat_results, map(len, output_types))
return fallback
DEVICE_TO_DEVICE_TYPE = 1
SEND_TO_HOST_TYPE = 2
RECV_FROM_HOST_TYPE = 3
_dtype_to_xla_type_string_map = {
np.dtype("bool"): "pred",
np.dtype("float16"): "f16",
np.dtype("float32"): "f32",
np.dtype("float64"): "f64",
np.dtype("int8"): "s8",
np.dtype("uint8"): "u8",
np.dtype("int16"): "s16",
np.dtype("uint16"): "u16",
np.dtype("int32"): "s32",
np.dtype("uint32"): "u32",
np.dtype("int64"): "s64",
np.dtype("uint64"): "u64",
dtypes._bfloat16_dtype: "bf16",
np.dtype("complex64"): "c64",
np.dtype("complex128"): "c128",
}
def _dtype_to_xla_type_string(dtype: np.dtype) -> str:
if dtype not in _dtype_to_xla_type_string_map:
raise NotImplementedError(dtype)
return _dtype_to_xla_type_string_map[dtype]
def send_to_host(channel: int, token: hlo.TokenType, operand: Any,
aval: core.ShapedArray, name: str, *,
sharding: Optional[xc.OpSharding] = None) -> ir.Value:
channel_handle = hlo.ChannelHandle.get(channel, SEND_TO_HOST_TYPE)
send_op = hlo.SendOp([operand], token, channel_handle,
is_host_transfer=ir.BoolAttr.get(True))
dtype_str = _dtype_to_xla_type_string(aval.dtype)
if dtype_str in {"f64", "s64", "u64", "c64", "c128"}:
raise NotImplementedError("64-bit types not supported.")
send_op.attributes["mhlo.frontend_attributes"] = ir.DictAttr.get(
dict(
_xla_host_transfer_handler_name=ir.StringAttr.get(str(name)),
_xla_host_transfer_original_type=ir.StringAttr.get(dtype_str),
_xla_host_transfer_rendezvous=ir.StringAttr.get(str(name))))
if sharding is not None:
set_sharding(send_op, sharding)
return send_op.result
def receive_from_host(channel: int, token: hlo.TokenType,
out_aval: core.ShapedArray, name: str, *,
sharding: Optional[xc.OpSharding] = None) -> ir.Value:
channel_handle = hlo.ChannelHandle.get(channel, RECV_FROM_HOST_TYPE)
recv_op = hlo.RecvOp([aval_to_ir_type(out_aval),
hlo.TokenType.get()], token, channel_handle,
is_host_transfer=ir.BoolAttr.get(True))
dtype_str = _dtype_to_xla_type_string(out_aval.dtype)
if dtype_str in {"f64", "s64", "u64", "c64", "c128"}:
raise NotImplementedError("64-bit types not supported.")
recv_op.attributes["mhlo.frontend_attributes"] = ir.DictAttr.get(
dict(
_xla_host_transfer_handler_name=ir.StringAttr.get(str(name)),
_xla_host_transfer_original_type=ir.StringAttr.get(dtype_str),
_xla_host_transfer_rendezvous=ir.StringAttr.get(str(name))))
if sharding is not None:
set_sharding(recv_op, sharding)
# Token should be at the end of the results
result, token = recv_op.results
return token, result
def _emit_tpu_python_callback(
backend: xb.XlaBackend,
ctx: LoweringRuleContext,
callback,
token: Optional[Any],
operands: Sequence[ir.Value],
operand_avals: List[core.ShapedArray],
operand_shapes: List[xc.Shape],
result_avals: List[core.ShapedArray],
result_shapes: List[xc.Shape],
*,
sharding: Optional[xc.OpSharding] = None
) -> Tuple[List[ir.Value], Any, Any]:
token = token or hlo.CreateTokenOp().result
_wrapped_callback = callback
send_channels = []
if not operand_avals:
# If there are no operands to the callback, we need to insert a dummy send
# op or the callback will never be triggered!
# TODO(sharadmv,chky): Enable this fix in the runtime as opposed to in
# MLIR builder.
callback_without_args = _wrapped_callback
def _wrapped_callback(*args): # pylint: disable=function-redefined
del args
return callback_without_args()
send_channel = ctx.module_context.new_channel()
dummy_send_aval = core.ShapedArray((1,), np.float32)
dummy_send_val = ir_constant(np.zeros(1, np.float32))
operand_shapes = [*operand_shapes,
xla.aval_to_xla_shapes(dummy_send_aval)[0]]
token = send_to_host(send_channel, token, dummy_send_val, dummy_send_aval,
callback.__name__, sharding=sharding)
send_channels.append(send_channel)
else:
for operand, operand_aval in zip(operands, operand_avals):
if any(s == 0 for s in operand_aval.shape):
raise NotImplementedError(
"Callbacks with zero-dimensional values not supported on TPU.")
channel = ctx.module_context.new_channel()
token = send_to_host(channel, token, operand, operand_aval,
callback.__name__, sharding=sharding)
send_channels.append(channel)
recv_channels = []
outputs = []
for result_aval in result_avals:
if any(s == 0 for s in result_aval.shape):
raise NotImplementedError(
"Callbacks with zero-dimensional values not supported on TPU.")
channel = ctx.module_context.new_channel()
assert isinstance(result_aval, core.ShapedArray)
token, out = receive_from_host(channel, token, result_aval,
callback.__name__, sharding=sharding)
outputs.append(out)
recv_channels.append(channel)
opaque = backend.make_python_callback_from_host_send_and_recv(
_wrapped_callback, operand_shapes, result_shapes, send_channels,
recv_channels)
ctx.module_context.add_host_callback(opaque)
return outputs, token, opaque
def _layout_to_mlir_layout(minor_to_major: Optional[Sequence[int]]):
if minor_to_major is None:
# Needed for token layouts
layout = np.zeros((0,), dtype="int64")
else:
layout = np.array(minor_to_major, dtype="int64")
return ir.DenseIntElementsAttr.get(layout, type=ir.IndexType.get())
def _aval_to_default_layouts(aval):
avals = [core.physical_aval(aval)]
# Row major order is default for `NumPy`.
return [list(range(aval.ndim - 1, -1, -1)) for aval in avals]
def emit_python_callback(
ctx: LoweringRuleContext, callback, token: Optional[Any],
operands: Sequence[ir.Value], operand_avals: List[core.ShapedArray],
result_avals: List[core.ShapedArray],
has_side_effect: bool, *, sharding: Optional[xc.OpSharding] = None,
operand_layouts: Optional[Sequence[Optional[Sequence[int]]]] = None,
result_layouts: Optional[Sequence[Optional[Sequence[int]]]] = None,
) -> Tuple[List[ir.Value], Any, Any]:
"""Emits MLIR that calls back to a provided Python function."""
platform = ctx.module_context.platform
if platform not in {"cpu", "cuda", "rocm", "tpu"}:
raise ValueError(
f"`EmitPythonCallback` not supported on {platform} backend.")
backend = ctx.module_context.backend
result_shapes = util.flatten(
[xla.aval_to_xla_shapes(result_aval) for result_aval in result_avals])
operand_shapes = util.flatten(
[xla.aval_to_xla_shapes(op_aval) for op_aval in operand_avals])
# Handling layouts
if operand_layouts is None:
operand_layouts = util.concatenate(
map(_aval_to_default_layouts, operand_avals))
operand_mlir_layouts = map(_layout_to_mlir_layout, operand_layouts)
if result_layouts is None:
result_layouts = util.concatenate(map(_aval_to_default_layouts, result_avals))
result_mlir_layouts = map(_layout_to_mlir_layout, result_layouts)
# First we apply checks to ensure output shapes and dtypes match the expected
# ones.
def _wrapped_callback(*args):
out_vals = callback(*args)
if len(out_vals) != len(result_avals):
raise RuntimeError(
"Mismatched number of outputs from callback. "
"Expected: {}, Actual: {}".format(len(result_avals), len(out_vals)))
for i, (out_val, out_aval) in enumerate(zip(out_vals, result_avals)):
if out_val.shape != out_aval.shape:
raise RuntimeError(
f"Incorrect output shape for return value {i}: "
"Expected: {}, Actual: {}".format(out_aval.shape, out_val.shape))
if out_val.dtype != out_aval.dtype:
raise RuntimeError(
f"Incorrect output dtype for return value {i}: "
"Expected: {}, Actual: {}".format(out_aval.dtype, out_val.dtype))
return out_vals
if platform == "tpu":
return _emit_tpu_python_callback(backend, ctx, _wrapped_callback, token,
operands, operand_avals, operand_shapes, result_avals, result_shapes,
sharding=sharding)
result_types = util.flatten([aval_to_ir_types(aval) for aval in result_avals])
if token:
callback_without_token = _wrapped_callback
def _wrapped_callback(token, *args): # type: ignore # pylint: disable=function-redefined
return (token, *callback_without_token(*args))
operand_shapes = [
xla.aval_to_xla_shapes(core.abstract_token)[0], *operand_shapes
]
result_shapes = [
xla.aval_to_xla_shapes(core.abstract_token)[0], *result_shapes
]
operands = [token, *operands]
result_types = [token_type()[0], *result_types]
operand_mlir_layouts = [_layout_to_mlir_layout(None), *operand_mlir_layouts]
result_mlir_layouts = [_layout_to_mlir_layout(None), *result_mlir_layouts]
callback_descriptor, keepalive = (
backend.get_emit_python_callback_descriptor(_wrapped_callback,
operand_shapes,
result_shapes))
descriptor_operand = ir_constant(
callback_descriptor, canonicalize_types=False)
callback_operands = [descriptor_operand, *operands]
if operand_mlir_layouts is not None:
operand_mlir_layouts = [_layout_to_mlir_layout([]), *operand_mlir_layouts]
result_type = ir.TupleType.get_tuple(result_types)
call_target_name = ("xla_python_gpu_callback"
if platform in {"cuda", "rocm"} else "xla_python_cpu_callback")
result = hlo.CustomCallOp(
[result_type],
callback_operands,
call_target_name=ir.StringAttr.get(call_target_name),
has_side_effect=ir.BoolAttr.get(has_side_effect),
api_version=i32_attr(2),
called_computations=ir.ArrayAttr.get([]),
backend_config=ir.StringAttr.get(str(callback_descriptor)),
operand_layouts=(
None if operand_mlir_layouts is None
else ir.ArrayAttr.get(operand_mlir_layouts)),
result_layouts=(
None if result_mlir_layouts is None
else ir.ArrayAttr.get(result_mlir_layouts)))
if sharding is not None:
set_sharding(result, sharding)
results = [
hlo.GetTupleElementOp(result, i32_attr(i)).result
for i in range(len(result_types))
]
if token:
token, *results = results
return results, token, keepalive
def build_xla_computation_helper(
closed_jaxpr: core.ClosedJaxpr, *, name: str, platform: str,
backend_or_name: str, axis_context: AxisContext) -> xc.XlaComputation:
"""Helper to generate pmap-style XLA computations for custom partitioners."""
if closed_jaxpr.effects:
raise NotImplementedError
lowering_result = lower_jaxpr_to_module(name, closed_jaxpr,
backend_or_name=backend_or_name, ordered_effects=[],
name_stack=source_info_util.NameStack(),
donated_args=[False] * len(closed_jaxpr.jaxpr.invars),
axis_context=axis_context, platform=platform)
return xc._xla.mlir.mlir_module_to_xla_computation(
module_to_string(lowering_result.module), use_tuple_args=False,
return_tuple=False)
def custom_call(
call_target_name: str,
out_types: Sequence[ir.Type],
operands: Sequence[ir.Value],
*,
backend_config: Optional[str] = None,
has_side_effect: bool = False,
result_shapes: Optional[Sequence[ir.Value]] = None,
api_version: int = 2,
) -> ir.Operation:
"""Wraps a hlo.CustomCall.
Args:
result_shapes: tensors that represent the result shapes, to be used when
the results have dynamic shapes. If not-None, its length must match the
number of the results.
"""
attributes = dict(
call_target_name=ir.StringAttr.get(call_target_name),
has_side_effect=ir.BoolAttr.get(has_side_effect),
backend_config=ir.StringAttr.get(
"" if backend_config is None else backend_config),
api_version=i32_attr(api_version),
called_computations=ir.ArrayAttr.get([]),
)
if result_shapes is not None:
# We add the result_shapes at the end of the operands, and must pass
# the indices_of_output_operands attribute. This attribute is not yet
# accepted by the CustomCall constructor, so we use build_generic
attributes["indices_of_shape_operands"] = ir.DenseIntElementsAttr.get(
np.asarray(list(range(len(operands), len(operands) + len(result_shapes))),
dtype=np.int64))
operands = list(operands) + list(result_shapes)
return hlo.CustomCallOp.build_generic(results=out_types, operands=operands, attributes=attributes)