Intelegentny_Pszczelarz/.venv/Lib/site-packages/jax/_src/numpy/reductions.py
2023-06-19 00:49:18 +02:00

885 lines
40 KiB
Python

# Copyright 2022 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import builtins
from functools import partial
import math
import operator
from typing import (
overload, Any, Callable, Literal, Optional, Protocol, Sequence, Tuple, Union)
import warnings
import numpy as np
from jax import lax
from jax._src import api
from jax._src import core
from jax._src import dtypes
from jax._src.numpy import ufuncs
from jax._src.numpy.util import (
_broadcast_to, check_arraylike, _complex_elem_type,
promote_dtypes_inexact, promote_dtypes_numeric, _where, _wraps)
from jax._src.lax import lax as lax_internal
from jax._src.typing import Array, ArrayLike, DType, DTypeLike
from jax._src.util import (
canonicalize_axis as _canonicalize_axis, maybe_named_axis)
_all = builtins.all
_lax_const = lax_internal._const
Axis = Union[None, int, Sequence[int]]
def _isscalar(element: Any) -> bool:
if hasattr(element, '__jax_array__'):
element = element.__jax_array__()
return dtypes.is_python_scalar(element) or np.isscalar(element)
def _moveaxis(a: ArrayLike, source: int, destination: int) -> Array:
# simplified version of jnp.moveaxis() for local use.
check_arraylike("moveaxis", a)
a = lax_internal.asarray(a)
source = _canonicalize_axis(source, np.ndim(a))
destination = _canonicalize_axis(destination, np.ndim(a))
perm = [i for i in range(np.ndim(a)) if i != source]
perm.insert(destination, source)
return lax.transpose(a, perm)
def _upcast_f16(dtype: DTypeLike) -> DType:
if np.dtype(dtype) in [np.float16, dtypes.bfloat16]:
return np.dtype('float32')
return np.dtype(dtype)
ReductionOp = Callable[[Any, Any], Any]
def _reduction(a: ArrayLike, name: str, np_fun: Any, op: ReductionOp, init_val: ArrayLike,
*, has_identity: bool = True,
preproc: Optional[Callable[[ArrayLike], ArrayLike]] = None,
bool_op: Optional[ReductionOp] = None,
upcast_f16_for_computation: bool = False,
axis: Axis = None, dtype: DTypeLike = None, out: None = None,
keepdims: bool = False, initial: Optional[ArrayLike] = None,
where_: Optional[ArrayLike] = None,
parallel_reduce: Optional[Callable[..., Array]] = None,
promote_integers: bool = False) -> Array:
bool_op = bool_op or op
# Note: we must accept out=None as an argument, because numpy reductions delegate to
# object methods. For example `np.sum(x)` will call `x.sum()` if the `sum()` method
# exists, passing along all its arguments.
if out is not None:
raise NotImplementedError(f"The 'out' argument to jnp.{name} is not supported.")
check_arraylike(name, a)
dtypes.check_user_dtype_supported(dtype, name)
axis = core.concrete_or_error(None, axis, f"axis argument to jnp.{name}().")
if initial is None and not has_identity and where_ is not None:
raise ValueError(f"reduction operation {name} does not have an identity, so to use a "
f"where mask one has to specify 'initial'")
a = a if isinstance(a, Array) else lax_internal.asarray(a)
a = preproc(a) if preproc else a
pos_dims, dims = _reduction_dims(a, axis)
if initial is None and not has_identity:
shape = np.shape(a)
if not _all(core.greater_equal_dim(shape[d], 1) for d in pos_dims):
raise ValueError(f"zero-size array to reduction operation {name} which has no identity")
result_dtype = dtype or dtypes.dtype(a)
if dtype is None and promote_integers:
# Note: NumPy always promotes to 64-bit; jax instead promotes to the
# default dtype as defined by dtypes.int_ or dtypes.uint.
if dtypes.issubdtype(result_dtype, np.bool_):
result_dtype = dtypes.int_
elif dtypes.issubdtype(result_dtype, np.unsignedinteger):
if np.iinfo(result_dtype).bits < np.iinfo(dtypes.uint).bits:
result_dtype = dtypes.uint
elif dtypes.issubdtype(result_dtype, np.integer):
if np.iinfo(result_dtype).bits < np.iinfo(dtypes.int_).bits:
result_dtype = dtypes.int_
result_dtype = dtypes.canonicalize_dtype(result_dtype)
if upcast_f16_for_computation and dtypes.issubdtype(result_dtype, np.inexact):
computation_dtype = _upcast_f16(result_dtype)
else:
computation_dtype = result_dtype
a = lax.convert_element_type(a, computation_dtype)
op = op if computation_dtype != np.bool_ else bool_op
# NB: in XLA, init_val must be an identity for the op, so the user-specified
# initial value must be applied afterward.
init_val = _reduction_init_val(a, init_val)
if where_ is not None:
a = _where(where_, a, init_val)
if pos_dims is not dims:
if parallel_reduce is None:
raise NotImplementedError(f"Named reductions not implemented for jnp.{name}()")
result = parallel_reduce(a, dims)
else:
result = lax.reduce(a, init_val, op, dims)
if initial is not None:
initial_arr = lax.convert_element_type(initial, lax_internal.asarray(a).dtype)
if initial_arr.shape != ():
raise ValueError("initial value must be a scalar. "
f"Got array of shape {initial_arr.shape}")
result = op(initial_arr, result)
if keepdims:
result = lax.expand_dims(result, pos_dims)
return lax.convert_element_type(result, dtype or result_dtype)
def _canonicalize_axis_allow_named(x, rank):
return maybe_named_axis(x, lambda i: _canonicalize_axis(i, rank), lambda name: name)
def _reduction_dims(a: ArrayLike, axis: Axis):
if axis is None:
return (tuple(range(np.ndim(a))),) * 2
elif not isinstance(axis, (np.ndarray, tuple, list)):
axis = (axis,) # type: ignore[assignment]
canon_axis = tuple(_canonicalize_axis_allow_named(x, np.ndim(a))
for x in axis) # type: ignore[union-attr]
if len(canon_axis) != len(set(canon_axis)):
raise ValueError(f"duplicate value in 'axis': {axis}")
canon_pos_axis = tuple(x for x in canon_axis if isinstance(x, int))
if len(canon_pos_axis) != len(canon_axis):
return canon_pos_axis, canon_axis
else:
return canon_axis, canon_axis
def _reduction_init_val(a: ArrayLike, init_val: Any) -> np.ndarray:
# This function uses np.* functions because lax pattern matches against the
# specific concrete values of the reduction inputs.
a_dtype = dtypes.canonicalize_dtype(dtypes.dtype(a))
if a_dtype == 'bool':
return np.array(init_val > 0, dtype=a_dtype)
try:
return np.array(init_val, dtype=a_dtype)
except OverflowError:
assert dtypes.issubdtype(a_dtype, np.integer)
sign, info = np.sign(init_val), dtypes.iinfo(a_dtype)
return np.array(info.min if sign < 0 else info.max, dtype=a_dtype)
def _cast_to_bool(operand: ArrayLike) -> Array:
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=np.ComplexWarning)
return lax.convert_element_type(operand, np.bool_)
def _cast_to_numeric(operand: ArrayLike) -> Array:
return promote_dtypes_numeric(operand)[0]
def _ensure_optional_axes(x: Axis) -> Axis:
def force(x):
if x is None:
return None
try:
return operator.index(x)
except TypeError:
return tuple(i if isinstance(i, str) else operator.index(i) for i in x)
return core.concrete_or_error(
force, x, "The axis argument must be known statically.")
# TODO(jakevdp) change promote_integers default to False
_PROMOTE_INTEGERS_DOC = """
promote_integers : bool, default=True
If True, then integer inputs will be promoted to the widest available integer
dtype, following numpy's behavior. If False, the result will have the same dtype
as the input. ``promote_integers`` is ignored if ``dtype`` is specified.
"""
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims', 'promote_integers'), inline=True)
def _reduce_sum(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, keepdims: bool = False,
initial: Optional[ArrayLike] = None, where: Optional[ArrayLike] = None,
promote_integers: bool = True) -> Array:
return _reduction(a, "sum", np.sum, lax.add, 0, preproc=_cast_to_numeric,
bool_op=lax.bitwise_or, upcast_f16_for_computation=True,
axis=axis, dtype=dtype, out=out, keepdims=keepdims,
initial=initial, where_=where, parallel_reduce=lax.psum,
promote_integers=promote_integers)
@_wraps(np.sum, skip_params=['out'], extra_params=_PROMOTE_INTEGERS_DOC)
def sum(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, keepdims: bool = False, initial: Optional[ArrayLike] = None,
where: Optional[ArrayLike] = None, promote_integers: bool = True) -> Array:
return _reduce_sum(a, axis=_ensure_optional_axes(axis), dtype=dtype, out=out,
keepdims=keepdims, initial=initial, where=where,
promote_integers=promote_integers)
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims', 'promote_integers'), inline=True)
def _reduce_prod(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, keepdims: bool = False,
initial: Optional[ArrayLike] = None, where: Optional[ArrayLike] = None,
promote_integers: bool = True) -> Array:
return _reduction(a, "prod", np.prod, lax.mul, 1, preproc=_cast_to_numeric,
bool_op=lax.bitwise_and, upcast_f16_for_computation=True,
axis=axis, dtype=dtype, out=out, keepdims=keepdims,
initial=initial, where_=where, promote_integers=promote_integers)
@_wraps(np.prod, skip_params=['out'], extra_params=_PROMOTE_INTEGERS_DOC)
def prod(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, keepdims: bool = False,
initial: Optional[ArrayLike] = None, where: Optional[ArrayLike] = None,
promote_integers: bool = True) -> Array:
return _reduce_prod(a, axis=_ensure_optional_axes(axis), dtype=dtype,
out=out, keepdims=keepdims, initial=initial, where=where,
promote_integers=promote_integers)
@partial(api.jit, static_argnames=('axis', 'keepdims'), inline=True)
def _reduce_max(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, initial: Optional[ArrayLike] = None,
where: Optional[ArrayLike] = None) -> Array:
return _reduction(a, "max", np.max, lax.max, -np.inf, has_identity=False,
axis=axis, out=out, keepdims=keepdims,
initial=initial, where_=where, parallel_reduce=lax.pmax)
@_wraps(np.max, skip_params=['out'])
def max(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, initial: Optional[ArrayLike] = None,
where: Optional[ArrayLike] = None) -> Array:
return _reduce_max(a, axis=_ensure_optional_axes(axis), out=out,
keepdims=keepdims, initial=initial, where=where)
@partial(api.jit, static_argnames=('axis', 'keepdims'), inline=True)
def _reduce_min(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, initial: Optional[ArrayLike] = None,
where: Optional[ArrayLike] = None) -> Array:
return _reduction(a, "min", np.min, lax.min, np.inf, has_identity=False,
axis=axis, out=out, keepdims=keepdims,
initial=initial, where_=where, parallel_reduce=lax.pmin)
@_wraps(np.min, skip_params=['out'])
def min(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, initial: Optional[ArrayLike] = None,
where: Optional[ArrayLike] = None) -> Array:
return _reduce_min(a, axis=_ensure_optional_axes(axis), out=out,
keepdims=keepdims, initial=initial, where=where)
@partial(api.jit, static_argnames=('axis', 'keepdims'), inline=True)
def _reduce_all(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, *, where: Optional[ArrayLike] = None) -> Array:
return _reduction(a, "all", np.all, lax.bitwise_and, True, preproc=_cast_to_bool,
axis=axis, out=out, keepdims=keepdims, where_=where)
@_wraps(np.all, skip_params=['out'])
def all(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, *, where: Optional[ArrayLike] = None) -> Array:
return _reduce_all(a, axis=_ensure_optional_axes(axis), out=out,
keepdims=keepdims, where=where)
@partial(api.jit, static_argnames=('axis', 'keepdims'), inline=True)
def _reduce_any(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, *, where: Optional[ArrayLike] = None) -> Array:
return _reduction(a, "any", np.any, lax.bitwise_or, False, preproc=_cast_to_bool,
axis=axis, out=out, keepdims=keepdims, where_=where)
@_wraps(np.any, skip_params=['out'])
def any(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, *, where: Optional[ArrayLike] = None) -> Array:
return _reduce_any(a, axis=_ensure_optional_axes(axis), out=out,
keepdims=keepdims, where=where)
amin = min
amax = max
def _axis_size(a: ArrayLike, axis: Union[int, Sequence[int]]):
if not isinstance(axis, (tuple, list)):
axis_seq: Sequence[int] = (axis,) # type: ignore[assignment]
else:
axis_seq = axis
size = 1
a_shape = np.shape(a)
for a in axis_seq:
size *= maybe_named_axis(a, lambda i: a_shape[i], lambda name: lax.psum(1, name))
return size
@_wraps(np.mean, skip_params=['out'])
def mean(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, keepdims: bool = False, *,
where: Optional[ArrayLike] = None) -> Array:
return _mean(a, _ensure_optional_axes(axis), dtype, out, keepdims,
where=where)
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'), inline=True)
def _mean(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, keepdims: bool = False, *,
where: Optional[ArrayLike] = None) -> Array:
check_arraylike("mean", a)
if dtype is None:
dtype = dtypes.to_inexact_dtype(dtypes.dtype(a))
else:
dtypes.check_user_dtype_supported(dtype, "mean")
dtype = dtypes.canonicalize_dtype(dtype)
if out is not None:
raise NotImplementedError("The 'out' argument to jnp.mean is not supported.")
if where is None:
if axis is None:
normalizer = core.dimension_as_value(np.size(a))
else:
normalizer = core.dimension_as_value(_axis_size(a, axis))
else:
normalizer = sum(_broadcast_to(where, np.shape(a)), axis, dtype=dtype, keepdims=keepdims)
return lax.div(
sum(a, axis, dtype=dtype, keepdims=keepdims, where=where),
lax.convert_element_type(normalizer, dtype))
@overload
def average(a: ArrayLike, axis: Axis = None, weights: Optional[ArrayLike] = None,
returned: Literal[False] = False, keepdims: bool = False) -> Array: ...
@overload
def average(a: ArrayLike, axis: Axis = None, weights: Optional[ArrayLike] = None, *,
returned: Literal[True], keepdims: bool = False) -> Array: ...
@overload
def average(a: ArrayLike, axis: Axis = None, weights: Optional[ArrayLike] = None,
returned: bool = False, keepdims: bool = False) -> Union[Array, Tuple[Array, Array]]: ...
@_wraps(np.average)
def average(a: ArrayLike, axis: Axis = None, weights: Optional[ArrayLike] = None,
returned: bool = False, keepdims: bool = False) -> Union[Array, Tuple[Array, Array]]:
return _average(a, _ensure_optional_axes(axis), weights, returned, keepdims)
@partial(api.jit, static_argnames=('axis', 'returned', 'keepdims'), inline=True)
def _average(a: ArrayLike, axis: Axis = None, weights: Optional[ArrayLike] = None,
returned: bool = False, keepdims: bool = False) -> Union[Array, Tuple[Array, Array]]:
if weights is None: # Treat all weights as 1
check_arraylike("average", a)
a, = promote_dtypes_inexact(a)
avg = mean(a, axis=axis, keepdims=keepdims)
if axis is None:
weights_sum = lax.full((), core.dimension_as_value(a.size), dtype=avg.dtype)
elif isinstance(axis, tuple):
weights_sum = lax.full_like(avg, math.prod(core.dimension_as_value(a.shape[d]) for d in axis))
else:
weights_sum = lax.full_like(avg, core.dimension_as_value(a.shape[axis])) # type: ignore[index]
else:
check_arraylike("average", a, weights)
a, weights = promote_dtypes_inexact(a, weights)
a_shape = np.shape(a)
a_ndim = len(a_shape)
weights_shape = np.shape(weights)
if axis is None:
pass
elif isinstance(axis, tuple):
axis = tuple(_canonicalize_axis(d, a_ndim) for d in axis)
else:
axis = _canonicalize_axis(axis, a_ndim)
if a_shape != weights_shape:
# Make sure the dimensions work out
if len(weights_shape) != 1:
raise ValueError("1D weights expected when shapes of a and "
"weights differ.")
if axis is None:
raise ValueError("Axis must be specified when shapes of a and "
"weights differ.")
elif isinstance(axis, tuple):
raise ValueError("Single axis expected when shapes of a and weights differ")
elif not core.symbolic_equal_dim(weights_shape[0], a_shape[axis]):
raise ValueError("Length of weights not "
"compatible with specified axis.")
weights = _broadcast_to(weights, (a_ndim - 1) * (1,) + weights_shape)
weights = _moveaxis(weights, -1, axis)
weights_sum = sum(weights, axis=axis, keepdims=keepdims)
avg = sum(a * weights, axis=axis, keepdims=keepdims) / weights_sum
if returned:
if avg.shape != weights_sum.shape:
weights_sum = _broadcast_to(weights_sum, avg.shape)
return avg, weights_sum
return avg
@_wraps(np.var, skip_params=['out'])
def var(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, ddof: int = 0, keepdims: bool = False, *,
where: Optional[ArrayLike] = None) -> Array:
return _var(a, _ensure_optional_axes(axis), dtype, out, ddof, keepdims,
where=where)
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
def _var(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, ddof: int = 0, keepdims: bool = False, *,
where: Optional[ArrayLike] = None) -> Array:
check_arraylike("var", a)
dtypes.check_user_dtype_supported(dtype, "var")
if out is not None:
raise NotImplementedError("The 'out' argument to jnp.var is not supported.")
computation_dtype, dtype = _var_promote_types(dtypes.dtype(a), dtype)
a = lax_internal.asarray(a).astype(computation_dtype)
a_mean = mean(a, axis, dtype=computation_dtype, keepdims=True, where=where)
centered = lax.sub(a, a_mean)
if dtypes.issubdtype(computation_dtype, np.complexfloating):
centered = lax.real(lax.mul(centered, lax.conj(centered)))
computation_dtype = centered.dtype # avoid casting to complex below.
else:
centered = lax.square(centered)
if where is None:
if axis is None:
normalizer = core.dimension_as_value(np.size(a))
else:
normalizer = core.dimension_as_value(_axis_size(a, axis))
normalizer = lax.convert_element_type(normalizer, computation_dtype)
else:
normalizer = sum(_broadcast_to(where, np.shape(a)), axis,
dtype=computation_dtype, keepdims=keepdims)
normalizer = lax.sub(normalizer, lax.convert_element_type(ddof, computation_dtype))
result = sum(centered, axis, dtype=computation_dtype, keepdims=keepdims, where=where)
return lax.div(result, normalizer).astype(dtype)
def _var_promote_types(a_dtype: DTypeLike, dtype: DTypeLike) -> Tuple[DType, DType]:
if dtype:
if (not dtypes.issubdtype(dtype, np.complexfloating) and
dtypes.issubdtype(a_dtype, np.complexfloating)):
msg = ("jax.numpy.var does not yet support real dtype parameters when "
"computing the variance of an array of complex values. The "
"semantics of numpy.var seem unclear in this case. Please comment "
"on https://github.com/google/jax/issues/2283 if this behavior is "
"important to you.")
raise ValueError(msg)
computation_dtype = dtype
else:
if not dtypes.issubdtype(a_dtype, np.inexact):
dtype = dtypes.to_inexact_dtype(a_dtype)
computation_dtype = dtype
else:
dtype = _complex_elem_type(a_dtype)
computation_dtype = a_dtype
return _upcast_f16(computation_dtype), np.dtype(dtype)
@_wraps(np.std, skip_params=['out'])
def std(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, ddof: int = 0, keepdims: bool = False, *,
where: Optional[ArrayLike] = None) -> Array:
return _std(a, _ensure_optional_axes(axis), dtype, out, ddof, keepdims,
where=where)
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
def _std(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None,
out: None = None, ddof: int = 0, keepdims: bool = False, *,
where: Optional[ArrayLike] = None) -> Array:
check_arraylike("std", a)
dtypes.check_user_dtype_supported(dtype, "std")
if dtype is not None and not dtypes.issubdtype(dtype, np.inexact):
raise ValueError(f"dtype argument to jnp.std must be inexact; got {dtype}")
if out is not None:
raise NotImplementedError("The 'out' argument to jnp.std is not supported.")
return lax.sqrt(var(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, where=where))
@_wraps(np.ptp, skip_params=['out'])
def ptp(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False) -> Array:
return _ptp(a, _ensure_optional_axes(axis), out, keepdims)
@partial(api.jit, static_argnames=('axis', 'keepdims'))
def _ptp(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False) -> Array:
check_arraylike("ptp", a)
if out is not None:
raise NotImplementedError("The 'out' argument to jnp.ptp is not supported.")
x = amax(a, axis=axis, keepdims=keepdims)
y = amin(a, axis=axis, keepdims=keepdims)
return lax.sub(x, y)
@_wraps(np.count_nonzero)
@partial(api.jit, static_argnames=('axis', 'keepdims'))
def count_nonzero(a: ArrayLike, axis: Axis = None,
keepdims: bool = False) -> Array:
check_arraylike("count_nonzero", a)
return sum(lax.ne(a, _lax_const(a, 0)), axis=axis,
dtype=dtypes.canonicalize_dtype(np.int_), keepdims=keepdims)
def _nan_reduction(a: ArrayLike, name: str, jnp_reduction: Callable[..., Array],
init_val: ArrayLike, nan_if_all_nan: bool,
axis: Axis = None, keepdims: bool = False, **kwargs) -> Array:
check_arraylike(name, a)
if not dtypes.issubdtype(dtypes.dtype(a), np.inexact):
return jnp_reduction(a, axis=axis, keepdims=keepdims, **kwargs)
out = jnp_reduction(_where(lax_internal._isnan(a), _reduction_init_val(a, init_val), a),
axis=axis, keepdims=keepdims, **kwargs)
if nan_if_all_nan:
return _where(all(lax_internal._isnan(a), axis=axis, keepdims=keepdims),
_lax_const(a, np.nan), out)
else:
return out
@_wraps(np.nanmin, skip_params=['out'])
@partial(api.jit, static_argnames=('axis', 'keepdims'))
def nanmin(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, initial: Optional[ArrayLike] = None,
where: Optional[ArrayLike] = None) -> Array:
return _nan_reduction(a, 'nanmin', min, np.inf, nan_if_all_nan=initial is None,
axis=axis, out=out, keepdims=keepdims,
initial=initial, where=where)
@_wraps(np.nanmax, skip_params=['out'])
@partial(api.jit, static_argnames=('axis', 'keepdims'))
def nanmax(a: ArrayLike, axis: Axis = None, out: None = None,
keepdims: bool = False, initial: Optional[ArrayLike] = None,
where: Optional[ArrayLike] = None) -> Array:
return _nan_reduction(a, 'nanmax', max, -np.inf, nan_if_all_nan=initial is None,
axis=axis, out=out, keepdims=keepdims,
initial=initial, where=where)
@_wraps(np.nansum, skip_params=['out'])
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
def nansum(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None, out: None = None,
keepdims: bool = False, initial: Optional[ArrayLike] = None,
where: Optional[ArrayLike] = None) -> Array:
dtypes.check_user_dtype_supported(dtype, "nanprod")
return _nan_reduction(a, 'nansum', sum, 0, nan_if_all_nan=False,
axis=axis, dtype=dtype, out=out, keepdims=keepdims,
initial=initial, where=where)
# Work around a sphinx documentation warning in NumPy 1.22.
if nansum.__doc__ is not None:
nansum.__doc__ = nansum.__doc__.replace("\n\n\n", "\n\n")
@_wraps(np.nanprod, skip_params=['out'])
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
def nanprod(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None, out: None = None,
keepdims: bool = False, initial: Optional[ArrayLike] = None,
where: Optional[ArrayLike] = None) -> Array:
dtypes.check_user_dtype_supported(dtype, "nanprod")
return _nan_reduction(a, 'nanprod', prod, 1, nan_if_all_nan=False,
axis=axis, dtype=dtype, out=out, keepdims=keepdims,
initial=initial, where=where)
@_wraps(np.nanmean, skip_params=['out'])
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
def nanmean(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None, out: None = None,
keepdims: bool = False, where: Optional[ArrayLike] = None) -> Array:
check_arraylike("nanmean", a)
dtypes.check_user_dtype_supported(dtype, "nanmean")
if out is not None:
raise NotImplementedError("The 'out' argument to jnp.nanmean is not supported.")
if dtypes.issubdtype(dtypes.dtype(a), np.bool_) or dtypes.issubdtype(dtypes.dtype(a), np.integer):
return mean(a, axis, dtype, out, keepdims, where=where)
if dtype is None:
dtype = dtypes.dtype(a)
nan_mask = lax_internal.bitwise_not(lax_internal._isnan(a))
normalizer = sum(nan_mask, axis=axis, dtype=np.int32, keepdims=keepdims, where=where)
normalizer = lax.convert_element_type(normalizer, dtype)
td = lax.div(nansum(a, axis, dtype=dtype, keepdims=keepdims, where=where), normalizer)
return td
@_wraps(np.nanvar, skip_params=['out'])
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
def nanvar(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None, out: None = None,
ddof: int = 0, keepdims: bool = False,
where: Optional[ArrayLike] = None) -> Array:
check_arraylike("nanvar", a)
dtypes.check_user_dtype_supported(dtype, "nanvar")
if out is not None:
raise NotImplementedError("The 'out' argument to jnp.nanvar is not supported.")
computation_dtype, dtype = _var_promote_types(dtypes.dtype(a), dtype)
a = lax_internal.asarray(a).astype(computation_dtype)
a_mean = nanmean(a, axis, dtype=computation_dtype, keepdims=True, where=where)
centered = _where(lax_internal._isnan(a), 0, lax.sub(a, a_mean)) # double-where trick for gradients.
if dtypes.issubdtype(centered.dtype, np.complexfloating):
centered = lax.real(lax.mul(centered, lax.conj(centered)))
else:
centered = lax.square(centered)
normalizer = sum(lax_internal.bitwise_not(lax_internal._isnan(a)),
axis=axis, keepdims=keepdims, where=where)
normalizer = normalizer - ddof
normalizer_mask = lax.le(normalizer, lax_internal._zero(normalizer))
result = sum(centered, axis, keepdims=keepdims, where=where)
result = _where(normalizer_mask, np.nan, result)
divisor = _where(normalizer_mask, 1, normalizer)
result = lax.div(result, lax.convert_element_type(divisor, result.dtype))
return lax.convert_element_type(result, dtype)
@_wraps(np.nanstd, skip_params=['out'])
@partial(api.jit, static_argnames=('axis', 'dtype', 'keepdims'))
def nanstd(a: ArrayLike, axis: Axis = None, dtype: DTypeLike = None, out: None = None,
ddof: int = 0, keepdims: bool = False,
where: Optional[ArrayLike] = None) -> Array:
check_arraylike("nanstd", a)
dtypes.check_user_dtype_supported(dtype, "nanstd")
if out is not None:
raise NotImplementedError("The 'out' argument to jnp.nanstd is not supported.")
return lax.sqrt(nanvar(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, where=where))
class CumulativeReduction(Protocol):
def __call__(self, a: ArrayLike, axis: Axis = None,
dtype: DTypeLike = None, out: None = None) -> Array: ...
def _make_cumulative_reduction(np_reduction: Any, reduction: Callable[..., Array],
fill_nan: bool = False, fill_value: ArrayLike = 0) -> CumulativeReduction:
@_wraps(np_reduction, skip_params=['out'])
def cumulative_reduction(a: ArrayLike, axis: Axis = None,
dtype: DTypeLike = None, out: None = None) -> Array:
return _cumulative_reduction(a, _ensure_optional_axes(axis), dtype, out)
@partial(api.jit, static_argnames=('axis', 'dtype'))
def _cumulative_reduction(a: ArrayLike, axis: Axis = None,
dtype: DTypeLike = None, out: None = None) -> Array:
check_arraylike(np_reduction.__name__, a)
if out is not None:
raise NotImplementedError(f"The 'out' argument to jnp.{np_reduction.__name__} "
f"is not supported.")
dtypes.check_user_dtype_supported(dtype, np_reduction.__name__)
if axis is None or _isscalar(a):
a = lax.reshape(a, (np.size(a),))
if axis is None:
axis = 0
a_shape = list(np.shape(a))
num_dims = len(a_shape)
axis = _canonicalize_axis(axis, num_dims)
if fill_nan:
a = _where(lax_internal._isnan(a), _lax_const(a, fill_value), a)
if not dtype and dtypes.dtype(a) == np.bool_:
dtype = dtypes.canonicalize_dtype(dtypes.int_)
if dtype:
a = lax.convert_element_type(a, dtype)
return reduction(a, axis)
return cumulative_reduction
cumsum = _make_cumulative_reduction(np.cumsum, lax.cumsum, fill_nan=False)
cumprod = _make_cumulative_reduction(np.cumprod, lax.cumprod, fill_nan=False)
nancumsum = _make_cumulative_reduction(np.nancumsum, lax.cumsum,
fill_nan=True, fill_value=0)
nancumprod = _make_cumulative_reduction(np.nancumprod, lax.cumprod,
fill_nan=True, fill_value=1)
# Quantiles
@_wraps(np.quantile, skip_params=['out', 'overwrite_input'])
@partial(api.jit, static_argnames=('axis', 'overwrite_input', 'interpolation',
'keepdims', 'method'))
def quantile(a: ArrayLike, q: ArrayLike, axis: Optional[Union[int, Tuple[int, ...]]] = None,
out: None = None, overwrite_input: bool = False, method: str = "linear",
keepdims: bool = False, interpolation: None = None) -> Array:
check_arraylike("quantile", a, q)
if overwrite_input or out is not None:
msg = ("jax.numpy.quantile does not support overwrite_input=True or "
"out != None")
raise ValueError(msg)
if interpolation is not None:
warnings.warn("The interpolation= argument to 'quantile' is deprecated. "
"Use 'method=' instead.", DeprecationWarning)
return _quantile(lax_internal.asarray(a), lax_internal.asarray(q), axis, interpolation or method, keepdims, False)
@_wraps(np.nanquantile, skip_params=['out', 'overwrite_input'])
@partial(api.jit, static_argnames=('axis', 'overwrite_input', 'interpolation',
'keepdims', 'method'))
def nanquantile(a: ArrayLike, q: ArrayLike, axis: Optional[Union[int, Tuple[int, ...]]] = None,
out: None = None, overwrite_input: bool = False, method: str = "linear",
keepdims: bool = False, interpolation: None = None) -> Array:
check_arraylike("nanquantile", a, q)
if overwrite_input or out is not None:
msg = ("jax.numpy.nanquantile does not support overwrite_input=True or "
"out != None")
raise ValueError(msg)
if interpolation is not None:
warnings.warn("The interpolation= argument to 'nanquantile' is deprecated. "
"Use 'method=' instead.", DeprecationWarning)
return _quantile(lax_internal.asarray(a), lax_internal.asarray(q), axis, interpolation or method, keepdims, True)
def _quantile(a: Array, q: Array, axis: Optional[Union[int, Tuple[int, ...]]],
interpolation: str, keepdims: bool, squash_nans: bool) -> Array:
if interpolation not in ["linear", "lower", "higher", "midpoint", "nearest"]:
raise ValueError("interpolation can only be 'linear', 'lower', 'higher', "
"'midpoint', or 'nearest'")
a, = promote_dtypes_inexact(a)
keepdim = []
if dtypes.issubdtype(a.dtype, np.complexfloating):
raise ValueError("quantile does not support complex input, as the operation is poorly defined.")
if axis is None:
a = a.ravel()
axis = 0
elif isinstance(axis, tuple):
keepdim = list(a.shape)
nd = a.ndim
axis = tuple(_canonicalize_axis(ax, nd) for ax in axis)
if len(set(axis)) != len(axis):
raise ValueError('repeated axis')
for ax in axis:
keepdim[ax] = 1
keep = set(range(nd)) - set(axis)
# prepare permutation
dimensions = list(range(nd))
for i, s in enumerate(sorted(keep)):
dimensions[i], dimensions[s] = dimensions[s], dimensions[i]
do_not_touch_shape = tuple(x for idx,x in enumerate(a.shape) if idx not in axis)
touch_shape = tuple(x for idx,x in enumerate(a.shape) if idx in axis)
a = lax.reshape(a, do_not_touch_shape + (math.prod(touch_shape),), dimensions)
axis = _canonicalize_axis(-1, a.ndim)
else:
axis = _canonicalize_axis(axis, a.ndim)
q_shape = q.shape
q_ndim = q.ndim
if q_ndim > 1:
raise ValueError(f"q must be have rank <= 1, got shape {q.shape}")
a_shape = a.shape
if squash_nans:
a = _where(ufuncs.isnan(a), np.nan, a) # Ensure nans are positive so they sort to the end.
a = lax.sort(a, dimension=axis)
counts = sum(ufuncs.logical_not(ufuncs.isnan(a)), axis=axis, dtype=q.dtype, keepdims=keepdims)
shape_after_reduction = counts.shape
q = lax.expand_dims(
q, tuple(range(q_ndim, len(shape_after_reduction) + q_ndim)))
counts = lax.expand_dims(counts, tuple(range(q_ndim)))
q = lax.mul(q, lax.sub(counts, _lax_const(q, 1)))
low = lax.floor(q)
high = lax.ceil(q)
high_weight = lax.sub(q, low)
low_weight = lax.sub(_lax_const(high_weight, 1), high_weight)
low = lax.max(_lax_const(low, 0), lax.min(low, counts - 1))
high = lax.max(_lax_const(high, 0), lax.min(high, counts - 1))
low = lax.convert_element_type(low, int)
high = lax.convert_element_type(high, int)
out_shape = q_shape + shape_after_reduction
index = [lax.broadcasted_iota(int, out_shape, dim + q_ndim)
for dim in range(len(shape_after_reduction))]
if keepdims:
index[axis] = low
else:
index.insert(axis, low)
low_value = a[tuple(index)]
index[axis] = high
high_value = a[tuple(index)]
else:
a = _where(any(ufuncs.isnan(a), axis=axis, keepdims=True), np.nan, a)
a = lax.sort(a, dimension=axis)
n = lax.convert_element_type(a_shape[axis], lax_internal._dtype(q))
q = lax.mul(q, n - 1)
low = lax.floor(q)
high = lax.ceil(q)
high_weight = lax.sub(q, low)
low_weight = lax.sub(_lax_const(high_weight, 1), high_weight)
low = lax.clamp(_lax_const(low, 0), low, n - 1)
high = lax.clamp(_lax_const(high, 0), high, n - 1)
low = lax.convert_element_type(low, int)
high = lax.convert_element_type(high, int)
slice_sizes = list(a_shape)
slice_sizes[axis] = 1
dnums = lax.GatherDimensionNumbers(
offset_dims=tuple(range(
q_ndim,
len(a_shape) + q_ndim if keepdims else len(a_shape) + q_ndim - 1)),
collapsed_slice_dims=() if keepdims else (axis,),
start_index_map=(axis,))
low_value = lax.gather(a, low[..., None], dimension_numbers=dnums,
slice_sizes=slice_sizes)
high_value = lax.gather(a, high[..., None], dimension_numbers=dnums,
slice_sizes=slice_sizes)
if q_ndim == 1:
low_weight = lax.broadcast_in_dim(low_weight, low_value.shape,
broadcast_dimensions=(0,))
high_weight = lax.broadcast_in_dim(high_weight, high_value.shape,
broadcast_dimensions=(0,))
if interpolation == "linear":
result = lax.add(lax.mul(low_value.astype(q.dtype), low_weight),
lax.mul(high_value.astype(q.dtype), high_weight))
elif interpolation == "lower":
result = low_value
elif interpolation == "higher":
result = high_value
elif interpolation == "nearest":
pred = lax.le(high_weight, _lax_const(high_weight, 0.5))
result = lax.select(pred, low_value, high_value)
elif interpolation == "midpoint":
result = lax.mul(lax.add(low_value, high_value), _lax_const(low_value, 0.5))
else:
raise ValueError(f"interpolation={interpolation!r} not recognized")
if keepdims and keepdim:
if q_ndim > 0:
keepdim = [np.shape(q)[0], *keepdim]
result = result.reshape(keepdim)
return lax.convert_element_type(result, a.dtype)
@_wraps(np.percentile, skip_params=['out', 'overwrite_input'])
@partial(api.jit, static_argnames=('axis', 'overwrite_input', 'interpolation',
'keepdims', 'method'))
def percentile(a: ArrayLike, q: ArrayLike,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
out: None = None, overwrite_input: bool = False, method: str = "linear",
keepdims: bool = False, interpolation: None = None) -> Array:
check_arraylike("percentile", a, q)
q, = promote_dtypes_inexact(q)
return quantile(a, q / 100, axis=axis, out=out, overwrite_input=overwrite_input,
interpolation=interpolation, method=method, keepdims=keepdims)
@_wraps(np.nanpercentile, skip_params=['out', 'overwrite_input'])
@partial(api.jit, static_argnames=('axis', 'overwrite_input', 'interpolation',
'keepdims', 'method'))
def nanpercentile(a: ArrayLike, q: ArrayLike,
axis: Optional[Union[int, Tuple[int, ...]]] = None,
out: None = None, overwrite_input: bool = False, method: str = "linear",
keepdims: bool = False, interpolation: None = None) -> Array:
check_arraylike("nanpercentile", a, q)
q = ufuncs.true_divide(q, 100.0)
return nanquantile(a, q, axis=axis, out=out, overwrite_input=overwrite_input,
interpolation=interpolation, method=method,
keepdims=keepdims)
@_wraps(np.median, skip_params=['out', 'overwrite_input'])
@partial(api.jit, static_argnames=('axis', 'overwrite_input', 'keepdims'))
def median(a: ArrayLike, axis: Optional[Union[int, Tuple[int, ...]]] = None,
out: None = None, overwrite_input: bool = False,
keepdims: bool = False) -> Array:
check_arraylike("median", a)
return quantile(a, 0.5, axis=axis, out=out, overwrite_input=overwrite_input,
keepdims=keepdims, method='midpoint')
@_wraps(np.nanmedian, skip_params=['out', 'overwrite_input'])
@partial(api.jit, static_argnames=('axis', 'overwrite_input', 'keepdims'))
def nanmedian(a: ArrayLike, axis: Optional[Union[int, Tuple[int, ...]]] = None,
out: None = None, overwrite_input: bool = False,
keepdims: bool = False) -> Array:
check_arraylike("nanmedian", a)
return nanquantile(a, 0.5, axis=axis, out=out,
overwrite_input=overwrite_input, keepdims=keepdims,
method='midpoint')