Intelegentny_Pszczelarz/.venv/Lib/site-packages/jax/experimental/jax2tf/tests/jax_export_test.py
2023-06-19 00:49:18 +02:00

384 lines
15 KiB
Python

# Copyright 2023 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import logging
import math
import re
from typing import List
import unittest
from absl.testing import absltest, parameterized
import jax
from jax import numpy as jnp
from jax import tree_util
from jax.config import config
from jax.experimental.jax2tf import jax_export
try:
from jax.experimental.jax2tf import jax2tf # TODO: temporary
except ImportError:
jax2tf = None # type: ignore
from jax.lib import xla_client as xc
from jax._src import core
from jax._src import test_util as jtu
from jax._src import xla_bridge as xb
import numpy as np
config.parse_flags_with_absl()
class JaxExportTest(jtu.JaxTestCase):
def test_basic_export_only(self):
def my_fun(x):
return jnp.sin(x)
exp = jax_export.export(my_fun)(jax.ShapeDtypeStruct((4,), dtype=np.float32))
self.assertEqual("my_fun", exp.fun_name)
self.assertEqual(jax_export.default_lowering_platform(), exp.lowering_platform)
self.assertEqual(tree_util.tree_flatten(((1,), {}))[1], exp.in_tree)
self.assertEqual((core.ShapedArray((4,), dtype=np.float32),), exp.in_avals)
self.assertEqual((core.ShapedArray((4,), dtype=np.float32),), exp.out_avals)
def test_pytree_export_only(self):
a = np.arange(4, dtype=np.float32)
b = np.arange(6, dtype=np.float32)
def f(a_b_pair, *, a, b):
return (dict(res=a_b_pair, a=a, b=b), jnp.sin(a), jnp.cos(b))
exp = jax_export.export(f, lowering_platform="cpu")((a, b), a=a, b=b)
a_aval = core.ShapedArray(a.shape, a.dtype)
b_aval = core.ShapedArray(b.shape, b.dtype)
self.assertEqual(exp.lowering_platform, "cpu")
args = ((a, b),)
kwargs = dict(a=a, b=b)
self.assertEqual(exp.in_tree, tree_util.tree_flatten((args, kwargs))[1])
self.assertEqual(exp.in_avals, (a_aval, b_aval, a_aval, b_aval))
self.assertEqual(exp.out_tree, tree_util.tree_flatten(f(*args, **kwargs))[1])
self.assertEqual(exp.out_avals, (a_aval, b_aval, a_aval, b_aval, a_aval, b_aval))
def test_poly_export_only(self):
a = np.arange(12, dtype=np.float32).reshape((3, 4))
def f(a, b): # a: f32[2w,h] b: f32[w,h]
return jnp.concatenate([a, b], axis=0)
exp = jax_export.export(f)(
jax_export.poly_spec(a.shape, a.dtype, "(2*w, h)"),
jax_export.poly_spec(a.shape, a.dtype, "(w, h)"))
self.assertEqual("(2*w, h)", str(exp.in_avals[0].shape))
self.assertEqual("(w, h)", str(exp.in_avals[1].shape))
self.assertEqual("(3*w, h)", str(exp.out_avals[0].shape))
def test_poly_pytree_export_only(self):
a = np.arange(12, dtype=np.float32).reshape((3, 4))
def f(a0, a1, *, ak):
return jnp.concatenate([a0, a1, ak], axis=0)
a_poly_spec = jax_export.poly_spec(a.shape, a.dtype, "(w, h)")
exp = jax_export.export(f)(a_poly_spec, a_poly_spec, ak=a_poly_spec)
self.assertEqual("(w, h)", str(exp.in_avals[0].shape))
self.assertEqual("(3*w, h)", str(exp.out_avals[0].shape))
def test_basic(self):
f = jnp.sin
x = np.arange(4, dtype=np.float32)
exp_f = jax_export.export(f)(x)
f1 = jax_export.call_exported(exp_f)
self.assertAllClose(f(x), f1(x))
def test_call_exported_lambda(self):
# When we export a lambda, the exported.fun_name is not a valid MLIR function name
f = lambda x: jnp.sin(x)
x = np.arange(4, dtype=np.float32)
exp_f = jax_export.export(f)(x)
f1 = jax_export.call_exported(exp_f)
self.assertAllClose(f(x), f1(x))
def test_call_twice_exported(self):
def f(x): return jnp.sin(x)
x = np.arange(4, dtype=np.float32)
@jax.jit
def f1(x):
exp_f = jax_export.export(f)(x)
return jax_export.call_exported(exp_f)(x) + jax_export.call_exported(exp_f)(x)
self.assertAllClose(2. * f(x), f1(x))
def test_unused_args(self):
f = lambda x, y: jnp.sin(x)
x = np.arange(4, dtype=np.float32)
y = np.arange(6, dtype=np.float32)
exp_f = jax_export.export(f)(x, y)
f1 = jax_export.call_exported(exp_f)
self.assertAllClose(f(x, y), f1(x, y))
def test_pytree(self):
a = np.arange(4, dtype=np.float32)
b = np.arange(6, dtype=np.float32)
def f(a_b_pair, a, b):
return (dict(res=a_b_pair, a=a, b=b), jnp.sin(a), jnp.cos(b))
exp_f = jax_export.export(f)((a, b), a=a, b=b)
f1 = jax_export.call_exported(exp_f)
self.assertAllClose(f((a, b), a=a, b=b),
f1((a, b), a=a, b=b))
def test_error_wrong_intree(self):
def f(a_b_pair, *, c):
return jnp.sin(a_b_pair[0]) + jnp.cos(a_b_pair[1]) + c
a = b = c = np.arange(4, dtype=np.float32)
exp_f = jax_export.export(f)((a, b), c=c)
with self.assertRaisesRegex(
ValueError,
"The invocation args and kwargs must have the same pytree structure"):
jax_export.call_exported(exp_f)(a, b, c=(a, b))
def test_error_wrong_avals(self):
def f(a, *, b): # a: f32[4] and b: f32[4]
return jnp.sin(a) + jnp.cos(b)
f32_4 = np.arange(4, dtype=np.float32)
exp_f = jax_export.export(f)(f32_4, b=f32_4)
with self.assertRaisesRegex(ValueError,
r"Shape mismatch for args\[0\].shape\[0\]"):
jax_export.call_exported(exp_f)(np.arange(6, dtype=np.float32), b=f32_4)
with self.assertRaisesRegex(ValueError,
r"Shape mismatch for kwargs\['b'\].shape\[0\]"):
jax_export.call_exported(exp_f)(f32_4, b=np.arange(6, dtype=np.float32))
with self.assertRaisesRegex(ValueError,
r"Rank mismatch for args\[0\]"):
jax_export.call_exported(exp_f)(f32_4.reshape((1, 4)), b=f32_4)
with self.assertRaisesRegex(ValueError,
r"Dtype mismatch for args\[0\]"):
jax_export.call_exported(exp_f)(f32_4.astype(np.float16), b=f32_4)
@parameterized.named_parameters(
dict(testcase_name=p, platform=p)
for p in ("cpu", "cuda", "rocm", "tpu"))
def test_error_wrong_platform(self, platform):
a = np.arange(4, dtype=np.float32)
exp_f = jax_export.export(jnp.sin, lowering_platform=platform)(a)
if xb.canonicalize_platform(jtu.device_under_test()) == platform:
raise unittest.SkipTest("")
with self.assertRaisesRegex(
ValueError, "The exported function .* was lowered for platform"):
jax_export.call_exported(exp_f)(a)
def test_grad(self):
f = lambda x: jnp.sum(jnp.sin(x))
x = np.arange(4, dtype=np.float32)
exp_f = jax_export.export(f)(x)
f1 = jax_export.call_exported(exp_f)
self.assertAllClose(jax.grad(f)(x), jax.grad(f1)(x))
def test_pytree_vjp(self):
def f(a_b_pair, *, a, b):
return (dict(res=a_b_pair, a=2. * a, b=3. * b),
jnp.sin(4. * a))
a = np.arange(4, dtype=np.float32)
b = np.arange(6, dtype=np.float32)
exp_f = jax_export.export(f)((a, b), a=a, b=b)
out_ct = f((a, b), a=a, b=b) # The output has the right structure as the cotangent
def f1_jax(a, b): # For VJP, make a function without kwargs
res = f((a, b), a=a, b=b)
return res
def f1_exp(a, b): # For VJP, make a function without kwargs
res = jax_export.call_exported(exp_f)((a, b), a=a, b=b)
return res
jax_vjp = jax.vjp(f1_jax, a, b)[1](out_ct)
exp_vjp = jax.vjp(f1_exp, a, b)[1](out_ct)
self.assertAllClose(jax_vjp, exp_vjp)
def test_roundtrip(self):
def f1(x):
return jnp.sin(x)
a = np.arange(4, dtype=np.float32)
exp_f1 = jax_export.export(f1)(a)
def f2(x):
res1 = jax_export.call_exported(exp_f1)(x)
res2 = jax_export.call_exported(exp_f1)(res1)
return jnp.cos(res2)
exp_f2 = jax_export.export(f2)(a)
self.assertAllClose(jnp.cos(jnp.sin(jnp.sin(a))),
jax_export.call_exported(exp_f2)(a))
# An inner function is exported with polymorphic shapes inner_poly_spec, and
# is called from an outer function, which is exported with outer_poly_spec.
@parameterized.named_parameters(
dict(testcase_name=f"inner={d['inner_poly_spec']}_outer={d['outer_poly_spec']}", # type: ignore
**d) # type: ignore
for d in (
dict(inner_poly_spec="3,a,a+b", outer_poly_spec="3,4,12"),
dict(inner_poly_spec="3,a,a+b", outer_poly_spec="3,4,c"),
dict(inner_poly_spec="3,a,a+b", outer_poly_spec="3,c,c",
expect_error=re.escape(
r"Dimension variable 'b' must have integer value >= 1. "
r"Found 0 when solving a + b == args[0].shape[2]")),
dict(inner_poly_spec="3,a,a+b", outer_poly_spec="c,4,12",
expect_error=r"Shape mismatch for args\[0\].shape\[0\] \(expected constant\)"),
dict(inner_poly_spec="3,a,a+b", outer_poly_spec="3,c+4,12",
expect_error=re.escape(
r"Dimension variable 'c' must have integer value >= 1. "
r"Found 0 when solving c + 4 == args[0].shape[1]")),
dict(inner_poly_spec="3,4,3*a", outer_poly_spec="3,4,12"),
dict(inner_poly_spec="3,4,5*a", outer_poly_spec="3,4,12",
expect_error=re.escape(
r"Dimension variable 'a' must have integer value >= 1. "
r"Non-zero remainder 2 for factor 5 when solving 5*a == args[0].shape[2]")),
# dict(inner_poly_spec="3,4,5*a", outer_poly_spec="3,4,c"), # TODO: there should be an error 5*a != c == 12
dict(inner_poly_spec="3,a,a", outer_poly_spec="3,a,a",
expect_error=re.escape(
r"Found inconsistency 12 != 4 when solving "
r"a == args[0].shape[2]")),
dict(inner_poly_spec="3,a", inner_x_shape=(3, 4), outer_poly_spec="3,a,a",
expect_error=r"Rank mismatch for args\[0\]"),
dict(inner_poly_spec="3,a,a+b", inner_x_dtype=np.int32, outer_poly_spec="3,c,d",
expect_error=r"Dtype mismatch for args\[0\]"),
))
def test_poly(self, inner_poly_spec="3,a,a+b", inner_x_shape=(3, 4, 6),
inner_x_dtype=np.float32,
outer_poly_spec="3,c+4,12", outer_x_shape=(3, 4, 12),
expect_error=None):
# Polymorphic export called with static or polymorphic shapes
def inner(x): # x: inner_poly_spec
return jnp.reshape(x, (-1, x.shape[1]))
inner_x = np.arange(np.prod(inner_x_shape),
dtype=inner_x_dtype).reshape(inner_x_shape) # inner_x : f32[3,4,6]
inner_exp = jax_export.export(inner)(
jax_export.poly_spec(inner_x.shape, inner_x.dtype, inner_poly_spec))
self.assertEqual(inner_exp.module_uses_dim_vars,
(inner_poly_spec != "3,4,12"))
outer_x = np.arange(np.prod(outer_x_shape),
dtype=np.float32).reshape(outer_x_shape) # outer_x : f32[3,4,12]
def outer(x): # x: outer_poly_spec
# Use an addition to test that the shapes are refined properly for the
# result of the call_exported.
return jax_export.call_exported(inner_exp)(x) + inner(x)
with contextlib.ExitStack() as stack:
if expect_error is not None:
stack.push(self.assertRaisesRegex(ValueError, expect_error))
# Call it after exporting again, with polymorphic shapes
outer_exp = jax_export.export(outer)(
jax_export.poly_spec(outer_x.shape, outer_x.dtype, outer_poly_spec))
self.assertEqual(outer_exp.module_uses_dim_vars,
(inner_poly_spec != "3,4,12" or outer_poly_spec != "3,4,12"))
# TODO(necula): need conditionals until jaxlib 0.4.12 is the minimum version
if not outer_exp.module_uses_dim_vars or xc.mlir_api_version >= 50:
res = jax_export.call_exported(outer_exp)(outer_x)
self.assertAllClose(2. * inner(outer_x), res)
else:
# TODO: for now, we use XlaCallModule to run modules with polymorphic shapes
# until we create the python bindings to invoke shape refinement.
if jax2tf is not None:
res = jax2tf._run_exported_as_tf([outer_x], outer_exp)[0].numpy()
self.assertAllClose(2. * inner(outer_x), res)
def test_call_poly(self):
a_shape = (3, 4)
a = np.arange(math.prod(a_shape), dtype=np.float32).reshape(a_shape)
def f_inner(x): # x: f32[w, h]
return jnp.reshape(x, (-1,))
exp_inner = jax_export.export(f_inner)(
jax_export.poly_spec(a.shape, a.dtype, "w, h")
)
# There are dynamic shapes in the exported module
self.assertIn("?x", exp_inner.mlir_module)
self.assertIn("stablehlo.dynamic_reshape", exp_inner.mlir_module)
# Add a wrapper "main" func with static shapes
# TODO(necula): We will add this functionality to jax_export.
from jax._src.interpreters import mlir
from jax._src.lib.mlir import ir
from jax._src.lib.mlir.dialects import hlo
from jax._src.lib.mlir.dialects import func as func_dialect
from jax.lib import xla_client as xc
from jax._src.lib import xla_extension
context = mlir.make_ir_context()
with context, ir.Location.unknown(context):
wrapped_module = ir.Module.parse(exp_inner.mlir_module)
symbol_table = ir.SymbolTable(wrapped_module.operation)
orig_main = symbol_table["main"]
orig_main.attributes["sym_visibility"] = ir.StringAttr.get("private")
symbol_table.set_symbol_name(orig_main, "_wrapped_jax_export_main")
orig_main_name = ir.StringAttr(symbol_table.insert(orig_main)).value
# Use static shapes
new_main_input_types = [
mlir.aval_to_ir_type(core.ShapedArray((3, 4), np.float32))
]
orig_output_types = orig_main.type.results
new_main_ftype = ir.FunctionType.get(
new_main_input_types, orig_output_types
)
new_main_op = func_dialect.FuncOp(
"main",
new_main_ftype,
ip=ir.InsertionPoint.at_block_begin(wrapped_module.body),
)
new_main_op.attributes["sym_visibility"] = ir.StringAttr.get("public")
symbol_table.insert(new_main_op)
entry_block = new_main_op.add_entry_block()
with ir.InsertionPoint(entry_block):
orig_main_args: List[ir.Value] = []
for new_arg, orig_arg_type in zip(
new_main_op.arguments, orig_main.type.inputs
):
orig_main_args.append(hlo.ConvertOp(orig_arg_type, new_arg).result)
call = func_dialect.CallOp(
orig_output_types,
ir.FlatSymbolRefAttr.get(orig_main_name),
orig_main_args,
)
func_dialect.ReturnOp(call.results)
symbol_table.set_symbol_name(new_main_op, "main")
# TODO(necula): need conditionals until jaxlib 0.4.12 is the minimum version
if xc.mlir_api_version >= 50:
refined_module_str = xla_extension.mlir.refine_polymorphic_shapes(
mlir.module_to_bytecode(wrapped_module)
)
context = mlir.make_ir_context()
with context:
refined_module = ir.Module.parse(refined_module_str)
logging.info("Postprocessed module %s", str(refined_module))
self.assertNotIn("?x", str(refined_module))
self.assertNotIn("stablehlo.dynamic_reshape", str(refined_module))
self.assertIn("stablehlo.reshape", str(refined_module))
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())