870 lines
26 KiB
Python
870 lines
26 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
|
|
"""EfficientNet models for Keras.
|
|
|
|
Reference:
|
|
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](
|
|
https://arxiv.org/abs/1905.11946) (ICML 2019)
|
|
"""
|
|
|
|
import copy
|
|
import math
|
|
|
|
import tensorflow.compat.v2 as tf
|
|
|
|
from keras import backend
|
|
from keras.applications import imagenet_utils
|
|
from keras.engine import training
|
|
from keras.layers import VersionAwareLayers
|
|
from keras.utils import data_utils
|
|
from keras.utils import layer_utils
|
|
|
|
# isort: off
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
|
|
BASE_WEIGHTS_PATH = "https://storage.googleapis.com/keras-applications/"
|
|
|
|
WEIGHTS_HASHES = {
|
|
"b0": (
|
|
"902e53a9f72be733fc0bcb005b3ebbac",
|
|
"50bc09e76180e00e4465e1a485ddc09d",
|
|
),
|
|
"b1": (
|
|
"1d254153d4ab51201f1646940f018540",
|
|
"74c4e6b3e1f6a1eea24c589628592432",
|
|
),
|
|
"b2": (
|
|
"b15cce36ff4dcbd00b6dd88e7857a6ad",
|
|
"111f8e2ac8aa800a7a99e3239f7bfb39",
|
|
),
|
|
"b3": (
|
|
"ffd1fdc53d0ce67064dc6a9c7960ede0",
|
|
"af6d107764bb5b1abb91932881670226",
|
|
),
|
|
"b4": (
|
|
"18c95ad55216b8f92d7e70b3a046e2fc",
|
|
"ebc24e6d6c33eaebbd558eafbeedf1ba",
|
|
),
|
|
"b5": (
|
|
"ace28f2a6363774853a83a0b21b9421a",
|
|
"38879255a25d3c92d5e44e04ae6cec6f",
|
|
),
|
|
"b6": (
|
|
"165f6e37dce68623721b423839de8be5",
|
|
"9ecce42647a20130c1f39a5d4cb75743",
|
|
),
|
|
"b7": (
|
|
"8c03f828fec3ef71311cd463b6759d99",
|
|
"cbcfe4450ddf6f3ad90b1b398090fe4a",
|
|
),
|
|
}
|
|
|
|
DEFAULT_BLOCKS_ARGS = [
|
|
{
|
|
"kernel_size": 3,
|
|
"repeats": 1,
|
|
"filters_in": 32,
|
|
"filters_out": 16,
|
|
"expand_ratio": 1,
|
|
"id_skip": True,
|
|
"strides": 1,
|
|
"se_ratio": 0.25,
|
|
},
|
|
{
|
|
"kernel_size": 3,
|
|
"repeats": 2,
|
|
"filters_in": 16,
|
|
"filters_out": 24,
|
|
"expand_ratio": 6,
|
|
"id_skip": True,
|
|
"strides": 2,
|
|
"se_ratio": 0.25,
|
|
},
|
|
{
|
|
"kernel_size": 5,
|
|
"repeats": 2,
|
|
"filters_in": 24,
|
|
"filters_out": 40,
|
|
"expand_ratio": 6,
|
|
"id_skip": True,
|
|
"strides": 2,
|
|
"se_ratio": 0.25,
|
|
},
|
|
{
|
|
"kernel_size": 3,
|
|
"repeats": 3,
|
|
"filters_in": 40,
|
|
"filters_out": 80,
|
|
"expand_ratio": 6,
|
|
"id_skip": True,
|
|
"strides": 2,
|
|
"se_ratio": 0.25,
|
|
},
|
|
{
|
|
"kernel_size": 5,
|
|
"repeats": 3,
|
|
"filters_in": 80,
|
|
"filters_out": 112,
|
|
"expand_ratio": 6,
|
|
"id_skip": True,
|
|
"strides": 1,
|
|
"se_ratio": 0.25,
|
|
},
|
|
{
|
|
"kernel_size": 5,
|
|
"repeats": 4,
|
|
"filters_in": 112,
|
|
"filters_out": 192,
|
|
"expand_ratio": 6,
|
|
"id_skip": True,
|
|
"strides": 2,
|
|
"se_ratio": 0.25,
|
|
},
|
|
{
|
|
"kernel_size": 3,
|
|
"repeats": 1,
|
|
"filters_in": 192,
|
|
"filters_out": 320,
|
|
"expand_ratio": 6,
|
|
"id_skip": True,
|
|
"strides": 1,
|
|
"se_ratio": 0.25,
|
|
},
|
|
]
|
|
|
|
CONV_KERNEL_INITIALIZER = {
|
|
"class_name": "VarianceScaling",
|
|
"config": {
|
|
"scale": 2.0,
|
|
"mode": "fan_out",
|
|
"distribution": "truncated_normal",
|
|
},
|
|
}
|
|
|
|
DENSE_KERNEL_INITIALIZER = {
|
|
"class_name": "VarianceScaling",
|
|
"config": {
|
|
"scale": 1.0 / 3.0,
|
|
"mode": "fan_out",
|
|
"distribution": "uniform",
|
|
},
|
|
}
|
|
|
|
layers = VersionAwareLayers()
|
|
|
|
BASE_DOCSTRING = """Instantiates the {name} architecture.
|
|
|
|
Reference:
|
|
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](
|
|
https://arxiv.org/abs/1905.11946) (ICML 2019)
|
|
|
|
This function returns a Keras image classification model,
|
|
optionally loaded with weights pre-trained on ImageNet.
|
|
|
|
For image classification use cases, see
|
|
[this page for detailed examples](
|
|
https://keras.io/api/applications/#usage-examples-for-image-classification-models).
|
|
|
|
For transfer learning use cases, make sure to read the
|
|
[guide to transfer learning & fine-tuning](
|
|
https://keras.io/guides/transfer_learning/).
|
|
|
|
Note: each Keras Application expects a specific kind of input preprocessing.
|
|
For EfficientNet, input preprocessing is included as part of the model
|
|
(as a `Rescaling` layer), and thus
|
|
`tf.keras.applications.efficientnet.preprocess_input` is actually a
|
|
pass-through function. EfficientNet models expect their inputs to be float
|
|
tensors of pixels with values in the [0-255] range.
|
|
|
|
Args:
|
|
include_top: Whether to include the fully-connected
|
|
layer at the top of the network. Defaults to True.
|
|
weights: One of `None` (random initialization),
|
|
'imagenet' (pre-training on ImageNet),
|
|
or the path to the weights file to be loaded. Defaults to 'imagenet'.
|
|
input_tensor: Optional Keras tensor
|
|
(i.e. output of `layers.Input()`)
|
|
to use as image input for the model.
|
|
input_shape: Optional shape tuple, only to be specified
|
|
if `include_top` is False.
|
|
It should have exactly 3 inputs channels.
|
|
pooling: Optional pooling mode for feature extraction
|
|
when `include_top` is `False`. Defaults to None.
|
|
- `None` means that the output of the model will be
|
|
the 4D tensor output of the
|
|
last convolutional layer.
|
|
- `avg` means that global average pooling
|
|
will be applied to the output of the
|
|
last convolutional layer, and thus
|
|
the output of the model will be a 2D tensor.
|
|
- `max` means that global max pooling will
|
|
be applied.
|
|
classes: Optional number of classes to classify images
|
|
into, only to be specified if `include_top` is True, and
|
|
if no `weights` argument is specified. Defaults to 1000 (number of
|
|
ImageNet classes).
|
|
classifier_activation: A `str` or callable. The activation function to use
|
|
on the "top" layer. Ignored unless `include_top=True`. Set
|
|
`classifier_activation=None` to return the logits of the "top" layer.
|
|
Defaults to 'softmax'.
|
|
When loading pretrained weights, `classifier_activation` can only
|
|
be `None` or `"softmax"`.
|
|
|
|
Returns:
|
|
A `keras.Model` instance.
|
|
"""
|
|
|
|
|
|
IMAGENET_STDDEV_RGB = [0.229, 0.224, 0.225]
|
|
|
|
|
|
def EfficientNet(
|
|
width_coefficient,
|
|
depth_coefficient,
|
|
default_size,
|
|
dropout_rate=0.2,
|
|
drop_connect_rate=0.2,
|
|
depth_divisor=8,
|
|
activation="swish",
|
|
blocks_args="default",
|
|
model_name="efficientnet",
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
):
|
|
"""Instantiates the EfficientNet architecture.
|
|
|
|
Args:
|
|
width_coefficient: float, scaling coefficient for network width.
|
|
depth_coefficient: float, scaling coefficient for network depth.
|
|
default_size: integer, default input image size.
|
|
dropout_rate: float, dropout rate before final classifier layer.
|
|
drop_connect_rate: float, dropout rate at skip connections.
|
|
depth_divisor: integer, a unit of network width.
|
|
activation: activation function.
|
|
blocks_args: list of dicts, parameters to construct block modules.
|
|
model_name: string, model name.
|
|
include_top: whether to include the fully-connected
|
|
layer at the top of the network.
|
|
weights: one of `None` (random initialization),
|
|
'imagenet' (pre-training on ImageNet),
|
|
or the path to the weights file to be loaded.
|
|
input_tensor: optional Keras tensor
|
|
(i.e. output of `layers.Input()`)
|
|
to use as image input for the model.
|
|
input_shape: optional shape tuple, only to be specified
|
|
if `include_top` is False.
|
|
It should have exactly 3 inputs channels.
|
|
pooling: optional pooling mode for feature extraction
|
|
when `include_top` is `False`.
|
|
- `None` means that the output of the model will be
|
|
the 4D tensor output of the
|
|
last convolutional layer.
|
|
- `avg` means that global average pooling
|
|
will be applied to the output of the
|
|
last convolutional layer, and thus
|
|
the output of the model will be a 2D tensor.
|
|
- `max` means that global max pooling will
|
|
be applied.
|
|
classes: optional number of classes to classify images
|
|
into, only to be specified if `include_top` is True, and
|
|
if no `weights` argument is specified.
|
|
classifier_activation: A `str` or callable. The activation function to use
|
|
on the "top" layer. Ignored unless `include_top=True`. Set
|
|
`classifier_activation=None` to return the logits of the "top" layer.
|
|
|
|
Returns:
|
|
A `keras.Model` instance.
|
|
|
|
Raises:
|
|
ValueError: in case of invalid argument for `weights`,
|
|
or invalid input shape.
|
|
ValueError: if `classifier_activation` is not `softmax` or `None` when
|
|
using a pretrained top layer.
|
|
"""
|
|
if blocks_args == "default":
|
|
blocks_args = DEFAULT_BLOCKS_ARGS
|
|
|
|
if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
|
|
raise ValueError(
|
|
"The `weights` argument should be either "
|
|
"`None` (random initialization), `imagenet` "
|
|
"(pre-training on ImageNet), "
|
|
"or the path to the weights file to be loaded."
|
|
)
|
|
|
|
if weights == "imagenet" and include_top and classes != 1000:
|
|
raise ValueError(
|
|
'If using `weights` as `"imagenet"` with `include_top`'
|
|
" as true, `classes` should be 1000"
|
|
)
|
|
|
|
# Determine proper input shape
|
|
input_shape = imagenet_utils.obtain_input_shape(
|
|
input_shape,
|
|
default_size=default_size,
|
|
min_size=32,
|
|
data_format=backend.image_data_format(),
|
|
require_flatten=include_top,
|
|
weights=weights,
|
|
)
|
|
|
|
if input_tensor is None:
|
|
img_input = layers.Input(shape=input_shape)
|
|
else:
|
|
if not backend.is_keras_tensor(input_tensor):
|
|
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
|
|
else:
|
|
img_input = input_tensor
|
|
|
|
bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
|
|
|
|
def round_filters(filters, divisor=depth_divisor):
|
|
"""Round number of filters based on depth multiplier."""
|
|
filters *= width_coefficient
|
|
new_filters = max(
|
|
divisor, int(filters + divisor / 2) // divisor * divisor
|
|
)
|
|
# Make sure that round down does not go down by more than 10%.
|
|
if new_filters < 0.9 * filters:
|
|
new_filters += divisor
|
|
return int(new_filters)
|
|
|
|
def round_repeats(repeats):
|
|
"""Round number of repeats based on depth multiplier."""
|
|
return int(math.ceil(depth_coefficient * repeats))
|
|
|
|
# Build stem
|
|
x = img_input
|
|
x = layers.Rescaling(1.0 / 255.0)(x)
|
|
x = layers.Normalization(axis=bn_axis)(x)
|
|
if weights == "imagenet":
|
|
# Note that the normaliztion layer uses square value of STDDEV as the
|
|
# variance for the layer: result = (input - mean) / sqrt(var)
|
|
# However, the original implemenetation uses (input - mean) / var to
|
|
# normalize the input, we need to divide another sqrt(var) to match the
|
|
# original implementation.
|
|
# See https://github.com/tensorflow/tensorflow/issues/49930 for more
|
|
# details
|
|
x = layers.Rescaling(1.0 / tf.math.sqrt(IMAGENET_STDDEV_RGB))(x)
|
|
|
|
x = layers.ZeroPadding2D(
|
|
padding=imagenet_utils.correct_pad(x, 3), name="stem_conv_pad"
|
|
)(x)
|
|
x = layers.Conv2D(
|
|
round_filters(32),
|
|
3,
|
|
strides=2,
|
|
padding="valid",
|
|
use_bias=False,
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER,
|
|
name="stem_conv",
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=bn_axis, name="stem_bn")(x)
|
|
x = layers.Activation(activation, name="stem_activation")(x)
|
|
|
|
# Build blocks
|
|
blocks_args = copy.deepcopy(blocks_args)
|
|
|
|
b = 0
|
|
blocks = float(sum(round_repeats(args["repeats"]) for args in blocks_args))
|
|
for i, args in enumerate(blocks_args):
|
|
assert args["repeats"] > 0
|
|
# Update block input and output filters based on depth multiplier.
|
|
args["filters_in"] = round_filters(args["filters_in"])
|
|
args["filters_out"] = round_filters(args["filters_out"])
|
|
|
|
for j in range(round_repeats(args.pop("repeats"))):
|
|
# The first block needs to take care of stride and filter size
|
|
# increase.
|
|
if j > 0:
|
|
args["strides"] = 1
|
|
args["filters_in"] = args["filters_out"]
|
|
x = block(
|
|
x,
|
|
activation,
|
|
drop_connect_rate * b / blocks,
|
|
name=f"block{i + 1}{chr(j + 97)}_",
|
|
**args,
|
|
)
|
|
b += 1
|
|
|
|
# Build top
|
|
x = layers.Conv2D(
|
|
round_filters(1280),
|
|
1,
|
|
padding="same",
|
|
use_bias=False,
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER,
|
|
name="top_conv",
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=bn_axis, name="top_bn")(x)
|
|
x = layers.Activation(activation, name="top_activation")(x)
|
|
if include_top:
|
|
x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
|
|
if dropout_rate > 0:
|
|
x = layers.Dropout(dropout_rate, name="top_dropout")(x)
|
|
imagenet_utils.validate_activation(classifier_activation, weights)
|
|
x = layers.Dense(
|
|
classes,
|
|
activation=classifier_activation,
|
|
kernel_initializer=DENSE_KERNEL_INITIALIZER,
|
|
name="predictions",
|
|
)(x)
|
|
else:
|
|
if pooling == "avg":
|
|
x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
|
|
elif pooling == "max":
|
|
x = layers.GlobalMaxPooling2D(name="max_pool")(x)
|
|
|
|
# Ensure that the model takes into account
|
|
# any potential predecessors of `input_tensor`.
|
|
if input_tensor is not None:
|
|
inputs = layer_utils.get_source_inputs(input_tensor)
|
|
else:
|
|
inputs = img_input
|
|
|
|
# Create model.
|
|
model = training.Model(inputs, x, name=model_name)
|
|
|
|
# Load weights.
|
|
if weights == "imagenet":
|
|
if include_top:
|
|
file_suffix = ".h5"
|
|
file_hash = WEIGHTS_HASHES[model_name[-2:]][0]
|
|
else:
|
|
file_suffix = "_notop.h5"
|
|
file_hash = WEIGHTS_HASHES[model_name[-2:]][1]
|
|
file_name = model_name + file_suffix
|
|
weights_path = data_utils.get_file(
|
|
file_name,
|
|
BASE_WEIGHTS_PATH + file_name,
|
|
cache_subdir="models",
|
|
file_hash=file_hash,
|
|
)
|
|
model.load_weights(weights_path)
|
|
elif weights is not None:
|
|
model.load_weights(weights)
|
|
return model
|
|
|
|
|
|
def block(
|
|
inputs,
|
|
activation="swish",
|
|
drop_rate=0.0,
|
|
name="",
|
|
filters_in=32,
|
|
filters_out=16,
|
|
kernel_size=3,
|
|
strides=1,
|
|
expand_ratio=1,
|
|
se_ratio=0.0,
|
|
id_skip=True,
|
|
):
|
|
"""An inverted residual block.
|
|
|
|
Args:
|
|
inputs: input tensor.
|
|
activation: activation function.
|
|
drop_rate: float between 0 and 1, fraction of the input units to drop.
|
|
name: string, block label.
|
|
filters_in: integer, the number of input filters.
|
|
filters_out: integer, the number of output filters.
|
|
kernel_size: integer, the dimension of the convolution window.
|
|
strides: integer, the stride of the convolution.
|
|
expand_ratio: integer, scaling coefficient for the input filters.
|
|
se_ratio: float between 0 and 1, fraction to squeeze the input filters.
|
|
id_skip: boolean.
|
|
|
|
Returns:
|
|
output tensor for the block.
|
|
"""
|
|
bn_axis = 3 if backend.image_data_format() == "channels_last" else 1
|
|
|
|
# Expansion phase
|
|
filters = filters_in * expand_ratio
|
|
if expand_ratio != 1:
|
|
x = layers.Conv2D(
|
|
filters,
|
|
1,
|
|
padding="same",
|
|
use_bias=False,
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER,
|
|
name=name + "expand_conv",
|
|
)(inputs)
|
|
x = layers.BatchNormalization(axis=bn_axis, name=name + "expand_bn")(x)
|
|
x = layers.Activation(activation, name=name + "expand_activation")(x)
|
|
else:
|
|
x = inputs
|
|
|
|
# Depthwise Convolution
|
|
if strides == 2:
|
|
x = layers.ZeroPadding2D(
|
|
padding=imagenet_utils.correct_pad(x, kernel_size),
|
|
name=name + "dwconv_pad",
|
|
)(x)
|
|
conv_pad = "valid"
|
|
else:
|
|
conv_pad = "same"
|
|
x = layers.DepthwiseConv2D(
|
|
kernel_size,
|
|
strides=strides,
|
|
padding=conv_pad,
|
|
use_bias=False,
|
|
depthwise_initializer=CONV_KERNEL_INITIALIZER,
|
|
name=name + "dwconv",
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=bn_axis, name=name + "bn")(x)
|
|
x = layers.Activation(activation, name=name + "activation")(x)
|
|
|
|
# Squeeze and Excitation phase
|
|
if 0 < se_ratio <= 1:
|
|
filters_se = max(1, int(filters_in * se_ratio))
|
|
se = layers.GlobalAveragePooling2D(name=name + "se_squeeze")(x)
|
|
if bn_axis == 1:
|
|
se_shape = (filters, 1, 1)
|
|
else:
|
|
se_shape = (1, 1, filters)
|
|
se = layers.Reshape(se_shape, name=name + "se_reshape")(se)
|
|
se = layers.Conv2D(
|
|
filters_se,
|
|
1,
|
|
padding="same",
|
|
activation=activation,
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER,
|
|
name=name + "se_reduce",
|
|
)(se)
|
|
se = layers.Conv2D(
|
|
filters,
|
|
1,
|
|
padding="same",
|
|
activation="sigmoid",
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER,
|
|
name=name + "se_expand",
|
|
)(se)
|
|
x = layers.multiply([x, se], name=name + "se_excite")
|
|
|
|
# Output phase
|
|
x = layers.Conv2D(
|
|
filters_out,
|
|
1,
|
|
padding="same",
|
|
use_bias=False,
|
|
kernel_initializer=CONV_KERNEL_INITIALIZER,
|
|
name=name + "project_conv",
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=bn_axis, name=name + "project_bn")(x)
|
|
if id_skip and strides == 1 and filters_in == filters_out:
|
|
if drop_rate > 0:
|
|
x = layers.Dropout(
|
|
drop_rate, noise_shape=(None, 1, 1, 1), name=name + "drop"
|
|
)(x)
|
|
x = layers.add([x, inputs], name=name + "add")
|
|
return x
|
|
|
|
|
|
@keras_export(
|
|
"keras.applications.efficientnet.EfficientNetB0",
|
|
"keras.applications.EfficientNetB0",
|
|
)
|
|
def EfficientNetB0(
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
**kwargs,
|
|
):
|
|
return EfficientNet(
|
|
1.0,
|
|
1.0,
|
|
224,
|
|
0.2,
|
|
model_name="efficientnetb0",
|
|
include_top=include_top,
|
|
weights=weights,
|
|
input_tensor=input_tensor,
|
|
input_shape=input_shape,
|
|
pooling=pooling,
|
|
classes=classes,
|
|
classifier_activation=classifier_activation,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@keras_export(
|
|
"keras.applications.efficientnet.EfficientNetB1",
|
|
"keras.applications.EfficientNetB1",
|
|
)
|
|
def EfficientNetB1(
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
**kwargs,
|
|
):
|
|
return EfficientNet(
|
|
1.0,
|
|
1.1,
|
|
240,
|
|
0.2,
|
|
model_name="efficientnetb1",
|
|
include_top=include_top,
|
|
weights=weights,
|
|
input_tensor=input_tensor,
|
|
input_shape=input_shape,
|
|
pooling=pooling,
|
|
classes=classes,
|
|
classifier_activation=classifier_activation,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@keras_export(
|
|
"keras.applications.efficientnet.EfficientNetB2",
|
|
"keras.applications.EfficientNetB2",
|
|
)
|
|
def EfficientNetB2(
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
**kwargs,
|
|
):
|
|
return EfficientNet(
|
|
1.1,
|
|
1.2,
|
|
260,
|
|
0.3,
|
|
model_name="efficientnetb2",
|
|
include_top=include_top,
|
|
weights=weights,
|
|
input_tensor=input_tensor,
|
|
input_shape=input_shape,
|
|
pooling=pooling,
|
|
classes=classes,
|
|
classifier_activation=classifier_activation,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@keras_export(
|
|
"keras.applications.efficientnet.EfficientNetB3",
|
|
"keras.applications.EfficientNetB3",
|
|
)
|
|
def EfficientNetB3(
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
**kwargs,
|
|
):
|
|
return EfficientNet(
|
|
1.2,
|
|
1.4,
|
|
300,
|
|
0.3,
|
|
model_name="efficientnetb3",
|
|
include_top=include_top,
|
|
weights=weights,
|
|
input_tensor=input_tensor,
|
|
input_shape=input_shape,
|
|
pooling=pooling,
|
|
classes=classes,
|
|
classifier_activation=classifier_activation,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@keras_export(
|
|
"keras.applications.efficientnet.EfficientNetB4",
|
|
"keras.applications.EfficientNetB4",
|
|
)
|
|
def EfficientNetB4(
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
**kwargs,
|
|
):
|
|
return EfficientNet(
|
|
1.4,
|
|
1.8,
|
|
380,
|
|
0.4,
|
|
model_name="efficientnetb4",
|
|
include_top=include_top,
|
|
weights=weights,
|
|
input_tensor=input_tensor,
|
|
input_shape=input_shape,
|
|
pooling=pooling,
|
|
classes=classes,
|
|
classifier_activation=classifier_activation,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@keras_export(
|
|
"keras.applications.efficientnet.EfficientNetB5",
|
|
"keras.applications.EfficientNetB5",
|
|
)
|
|
def EfficientNetB5(
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
**kwargs,
|
|
):
|
|
return EfficientNet(
|
|
1.6,
|
|
2.2,
|
|
456,
|
|
0.4,
|
|
model_name="efficientnetb5",
|
|
include_top=include_top,
|
|
weights=weights,
|
|
input_tensor=input_tensor,
|
|
input_shape=input_shape,
|
|
pooling=pooling,
|
|
classes=classes,
|
|
classifier_activation=classifier_activation,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@keras_export(
|
|
"keras.applications.efficientnet.EfficientNetB6",
|
|
"keras.applications.EfficientNetB6",
|
|
)
|
|
def EfficientNetB6(
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
**kwargs,
|
|
):
|
|
return EfficientNet(
|
|
1.8,
|
|
2.6,
|
|
528,
|
|
0.5,
|
|
model_name="efficientnetb6",
|
|
include_top=include_top,
|
|
weights=weights,
|
|
input_tensor=input_tensor,
|
|
input_shape=input_shape,
|
|
pooling=pooling,
|
|
classes=classes,
|
|
classifier_activation=classifier_activation,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@keras_export(
|
|
"keras.applications.efficientnet.EfficientNetB7",
|
|
"keras.applications.EfficientNetB7",
|
|
)
|
|
def EfficientNetB7(
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
**kwargs,
|
|
):
|
|
return EfficientNet(
|
|
2.0,
|
|
3.1,
|
|
600,
|
|
0.5,
|
|
model_name="efficientnetb7",
|
|
include_top=include_top,
|
|
weights=weights,
|
|
input_tensor=input_tensor,
|
|
input_shape=input_shape,
|
|
pooling=pooling,
|
|
classes=classes,
|
|
classifier_activation=classifier_activation,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
EfficientNetB0.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB0")
|
|
EfficientNetB1.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB1")
|
|
EfficientNetB2.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB2")
|
|
EfficientNetB3.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB3")
|
|
EfficientNetB4.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB4")
|
|
EfficientNetB5.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB5")
|
|
EfficientNetB6.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB6")
|
|
EfficientNetB7.__doc__ = BASE_DOCSTRING.format(name="EfficientNetB7")
|
|
|
|
|
|
@keras_export("keras.applications.efficientnet.preprocess_input")
|
|
def preprocess_input(x, data_format=None):
|
|
"""A placeholder method for backward compatibility.
|
|
|
|
The preprocessing logic has been included in the efficientnet model
|
|
implementation. Users are no longer required to call this method to
|
|
normalize the input data. This method does nothing and only kept as a
|
|
placeholder to align the API surface between old and new version of model.
|
|
|
|
Args:
|
|
x: A floating point `numpy.array` or a `tf.Tensor`.
|
|
data_format: Optional data format of the image tensor/array. Defaults to
|
|
None, in which case the global setting
|
|
`tf.keras.backend.image_data_format()` is used (unless you changed it,
|
|
it defaults to "channels_last").{mode}
|
|
|
|
Returns:
|
|
Unchanged `numpy.array` or `tf.Tensor`.
|
|
"""
|
|
return x
|
|
|
|
|
|
@keras_export("keras.applications.efficientnet.decode_predictions")
|
|
def decode_predictions(preds, top=5):
|
|
return imagenet_utils.decode_predictions(preds, top=top)
|
|
|
|
|
|
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|