Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/constraints.py
2023-06-19 00:49:18 +02:00

399 lines
13 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Constraints: functions that impose constraints on weight values."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.saving.legacy import serialization as legacy_serialization
from keras.saving.legacy.serialization import deserialize_keras_object
from keras.saving.legacy.serialization import serialize_keras_object
# isort: off
from tensorflow.python.util.tf_export import keras_export
from tensorflow.tools.docs import doc_controls
@keras_export("keras.constraints.Constraint")
class Constraint:
"""Base class for weight constraints.
A `Constraint` instance works like a stateless function.
Users who subclass this
class should override the `__call__` method, which takes a single
weight parameter and return a projected version of that parameter
(e.g. normalized or clipped). Constraints can be used with various Keras
layers via the `kernel_constraint` or `bias_constraint` arguments.
Here's a simple example of a non-negative weight constraint:
>>> class NonNegative(tf.keras.constraints.Constraint):
...
... def __call__(self, w):
... return w * tf.cast(tf.math.greater_equal(w, 0.), w.dtype)
>>> weight = tf.constant((-1.0, 1.0))
>>> NonNegative()(weight)
<tf.Tensor: shape=(2,), dtype=float32, numpy=array([0., 1.],
dtype=float32)>
>>> tf.keras.layers.Dense(4, kernel_constraint=NonNegative())
"""
def __call__(self, w):
"""Applies the constraint to the input weight variable.
By default, the inputs weight variable is not modified.
Users should override this method to implement their own projection
function.
Args:
w: Input weight variable.
Returns:
Projected variable (by default, returns unmodified inputs).
"""
return w
def get_config(self):
"""Returns a Python dict of the object config.
A constraint config is a Python dictionary (JSON-serializable) that can
be used to reinstantiate the same object.
Returns:
Python dict containing the configuration of the constraint object.
"""
return {}
@classmethod
def from_config(cls, config):
"""Instantiates a weight constraint from a configuration dictionary.
Example:
```python
constraint = UnitNorm()
config = constraint.get_config()
constraint = UnitNorm.from_config(config)
```
Args:
config: A Python dictionary, the output of `get_config`.
Returns:
A `tf.keras.constraints.Constraint` instance.
"""
return cls(**config)
@keras_export("keras.constraints.MaxNorm", "keras.constraints.max_norm")
class MaxNorm(Constraint):
"""MaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have a norm less than or equal to a desired value.
Also available via the shortcut function `tf.keras.constraints.max_norm`.
Args:
max_value: the maximum norm value for the incoming weights.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, max_value=2, axis=0):
self.max_value = max_value
self.axis = axis
@doc_controls.do_not_generate_docs
def __call__(self, w):
norms = backend.sqrt(
tf.reduce_sum(tf.square(w), axis=self.axis, keepdims=True)
)
desired = backend.clip(norms, 0, self.max_value)
return w * (desired / (backend.epsilon() + norms))
@doc_controls.do_not_generate_docs
def get_config(self):
return {"max_value": self.max_value, "axis": self.axis}
@keras_export("keras.constraints.NonNeg", "keras.constraints.non_neg")
class NonNeg(Constraint):
"""Constrains the weights to be non-negative.
Also available via the shortcut function `tf.keras.constraints.non_neg`.
"""
def __call__(self, w):
return w * tf.cast(tf.greater_equal(w, 0.0), backend.floatx())
@keras_export("keras.constraints.UnitNorm", "keras.constraints.unit_norm")
class UnitNorm(Constraint):
"""Constrains the weights incident to each hidden unit to have unit norm.
Also available via the shortcut function `tf.keras.constraints.unit_norm`.
Args:
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, axis=0):
self.axis = axis
@doc_controls.do_not_generate_docs
def __call__(self, w):
return w / (
backend.epsilon()
+ backend.sqrt(
tf.reduce_sum(tf.square(w), axis=self.axis, keepdims=True)
)
)
@doc_controls.do_not_generate_docs
def get_config(self):
return {"axis": self.axis}
@keras_export("keras.constraints.MinMaxNorm", "keras.constraints.min_max_norm")
class MinMaxNorm(Constraint):
"""MinMaxNorm weight constraint.
Constrains the weights incident to each hidden unit
to have the norm between a lower bound and an upper bound.
Also available via the shortcut function
`tf.keras.constraints.min_max_norm`.
Args:
min_value: the minimum norm for the incoming weights.
max_value: the maximum norm for the incoming weights.
rate: rate for enforcing the constraint: weights will be
rescaled to yield
`(1 - rate) * norm + rate * norm.clip(min_value, max_value)`.
Effectively, this means that rate=1.0 stands for strict
enforcement of the constraint, while rate<1.0 means that
weights will be rescaled at each step to slowly move
towards a value inside the desired interval.
axis: integer, axis along which to calculate weight norms.
For instance, in a `Dense` layer the weight matrix
has shape `(input_dim, output_dim)`,
set `axis` to `0` to constrain each weight vector
of length `(input_dim,)`.
In a `Conv2D` layer with `data_format="channels_last"`,
the weight tensor has shape
`(rows, cols, input_depth, output_depth)`,
set `axis` to `[0, 1, 2]`
to constrain the weights of each filter tensor of size
`(rows, cols, input_depth)`.
"""
def __init__(self, min_value=0.0, max_value=1.0, rate=1.0, axis=0):
self.min_value = min_value
self.max_value = max_value
self.rate = rate
self.axis = axis
@doc_controls.do_not_generate_docs
def __call__(self, w):
norms = backend.sqrt(
tf.reduce_sum(tf.square(w), axis=self.axis, keepdims=True)
)
desired = (
self.rate * backend.clip(norms, self.min_value, self.max_value)
+ (1 - self.rate) * norms
)
return w * (desired / (backend.epsilon() + norms))
@doc_controls.do_not_generate_docs
def get_config(self):
return {
"min_value": self.min_value,
"max_value": self.max_value,
"rate": self.rate,
"axis": self.axis,
}
@keras_export(
"keras.constraints.RadialConstraint", "keras.constraints.radial_constraint"
)
class RadialConstraint(Constraint):
"""Constrains `Conv2D` kernel weights to be the same for each radius.
Also available via the shortcut function
`tf.keras.constraints.radial_constraint`.
For example, the desired output for the following 4-by-4 kernel:
```
kernel = [[v_00, v_01, v_02, v_03],
[v_10, v_11, v_12, v_13],
[v_20, v_21, v_22, v_23],
[v_30, v_31, v_32, v_33]]
```
is this::
```
kernel = [[v_11, v_11, v_11, v_11],
[v_11, v_33, v_33, v_11],
[v_11, v_33, v_33, v_11],
[v_11, v_11, v_11, v_11]]
```
This constraint can be applied to any `Conv2D` layer version, including
`Conv2DTranspose` and `SeparableConv2D`, and with either `"channels_last"`
or `"channels_first"` data format. The method assumes the weight tensor is
of shape `(rows, cols, input_depth, output_depth)`.
"""
@doc_controls.do_not_generate_docs
def __call__(self, w):
w_shape = w.shape
if w_shape.rank is None or w_shape.rank != 4:
raise ValueError(
"The weight tensor must have rank 4. "
f"Received weight tensor with shape: {w_shape}"
)
height, width, channels, kernels = w_shape
w = backend.reshape(w, (height, width, channels * kernels))
# TODO(cpeter): Switch map_fn for a faster tf.vectorized_map once
# backend.switch is supported.
w = backend.map_fn(
self._kernel_constraint,
backend.stack(tf.unstack(w, axis=-1), axis=0),
)
return backend.reshape(
backend.stack(tf.unstack(w, axis=0), axis=-1),
(height, width, channels, kernels),
)
def _kernel_constraint(self, kernel):
"""Radially constraints a kernel with shape (height, width,
channels)."""
padding = backend.constant([[1, 1], [1, 1]], dtype="int32")
kernel_shape = backend.shape(kernel)[0]
start = backend.cast(kernel_shape / 2, "int32")
kernel_new = backend.switch(
backend.cast(tf.math.floormod(kernel_shape, 2), "bool"),
lambda: kernel[start - 1 : start, start - 1 : start],
lambda: kernel[start - 1 : start, start - 1 : start]
+ backend.zeros((2, 2), dtype=kernel.dtype),
)
index = backend.switch(
backend.cast(tf.math.floormod(kernel_shape, 2), "bool"),
lambda: backend.constant(0, dtype="int32"),
lambda: backend.constant(1, dtype="int32"),
)
while_condition = lambda index, *args: backend.less(index, start)
def body_fn(i, array):
return i + 1, tf.pad(
array, padding, constant_values=kernel[start + i, start + i]
)
_, kernel_new = tf.compat.v1.while_loop(
while_condition,
body_fn,
[index, kernel_new],
shape_invariants=[index.get_shape(), tf.TensorShape([None, None])],
)
return kernel_new
# Aliases.
max_norm = MaxNorm
non_neg = NonNeg
unit_norm = UnitNorm
min_max_norm = MinMaxNorm
radial_constraint = RadialConstraint
# Legacy aliases.
maxnorm = max_norm
nonneg = non_neg
unitnorm = unit_norm
@keras_export("keras.constraints.serialize")
def serialize(constraint, use_legacy_format=False):
if use_legacy_format:
return legacy_serialization.serialize_keras_object(constraint)
return serialize_keras_object(constraint)
@keras_export("keras.constraints.deserialize")
def deserialize(config, custom_objects=None, use_legacy_format=False):
if use_legacy_format:
return legacy_serialization.deserialize_keras_object(
config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name="constraint",
)
return deserialize_keras_object(
config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name="constraint",
)
@keras_export("keras.constraints.get")
def get(identifier):
"""Retrieves a Keras constraint function."""
if identifier is None:
return None
if isinstance(identifier, dict):
use_legacy_format = "module" not in identifier
return deserialize(identifier, use_legacy_format=use_legacy_format)
elif isinstance(identifier, str):
config = {"class_name": str(identifier), "config": {}}
return deserialize(config)
elif callable(identifier):
return identifier
else:
raise ValueError(
f"Could not interpret constraint function identifier: {identifier}"
)