Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/activation/leaky_relu.py
2023-06-19 00:49:18 +02:00

82 lines
2.5 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Leaky version of a Rectified Linear Unit activation layer."""
from keras import backend
from keras.engine.base_layer import Layer
from keras.utils import tf_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.LeakyReLU")
class LeakyReLU(Layer):
"""Leaky version of a Rectified Linear Unit.
It allows a small gradient when the unit is not active:
```
f(x) = alpha * x if x < 0
f(x) = x if x >= 0
```
Usage:
>>> layer = tf.keras.layers.LeakyReLU()
>>> output = layer([-3.0, -1.0, 0.0, 2.0])
>>> list(output.numpy())
[-0.9, -0.3, 0.0, 2.0]
>>> layer = tf.keras.layers.LeakyReLU(alpha=0.1)
>>> output = layer([-3.0, -1.0, 0.0, 2.0])
>>> list(output.numpy())
[-0.3, -0.1, 0.0, 2.0]
Input shape:
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the batch axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as the input.
Args:
alpha: Float >= 0. Negative slope coefficient. Default to 0.3.
"""
def __init__(self, alpha=0.3, **kwargs):
super().__init__(**kwargs)
if alpha is None:
raise ValueError(
"The alpha value of a Leaky ReLU layer cannot be None, "
f"Expecting a float. Received: {alpha}"
)
self.supports_masking = True
self.alpha = backend.cast_to_floatx(alpha)
def call(self, inputs):
return backend.relu(inputs, alpha=self.alpha)
def get_config(self):
config = {"alpha": float(self.alpha)}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
@tf_utils.shape_type_conversion
def compute_output_shape(self, input_shape):
return input_shape