Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/kernelized.py
2023-06-19 00:49:18 +02:00

286 lines
11 KiB
Python

# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras layers that implement explicit (approximate) kernel feature maps."""
import numpy as np
import tensorflow.compat.v2 as tf
from keras import initializers
from keras.engine import base_layer
from keras.engine import input_spec
# isort: off
from tensorflow.python.util.tf_export import keras_export
_SUPPORTED_RBF_KERNEL_TYPES = ["gaussian", "laplacian"]
@keras_export("keras.layers.experimental.RandomFourierFeatures")
class RandomFourierFeatures(base_layer.Layer):
r"""Layer that projects its inputs into a random feature space.
This layer implements a mapping from input space to a space with
`output_dim` dimensions, which approximates shift-invariant kernels. A
kernel function `K(x, y)` is shift-invariant if `K(x, y) == k(x - y)` for
some function `k`. Many popular Radial Basis Functions (RBF), including
Gaussian and Laplacian kernels, are shift-invariant.
The implementation of this layer is based on the following paper:
["Random Features for Large-Scale Kernel Machines"](
https://people.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf)
by Ali Rahimi and Ben Recht.
The distribution from which the parameters of the random features map
(layer) are sampled determines which shift-invariant kernel the layer
approximates (see paper for more details). You can use the distribution of
your choice. The layer supports out-of-the-box approximations of the
following two RBF kernels:
- Gaussian: `K(x, y) == exp(- square(x - y) / (2 * square(scale)))`
- Laplacian: `K(x, y) = exp(-abs(x - y) / scale))`
**Note:** Unlike what is described in the paper and unlike what is used in
the Scikit-Learn implementation, the output of this layer does not apply
the `sqrt(2 / D)` normalization factor.
**Usage:** Typically, this layer is used to "kernelize" linear models by
applying a non-linear transformation (this layer) to the input features and
then training a linear model on top of the transformed features. Depending
on the loss function of the linear model, the composition of this layer and
the linear model results to models that are equivalent (up to approximation)
to kernel SVMs (for hinge loss), kernel logistic regression (for logistic
loss), kernel linear regression (for squared loss), etc.
Examples:
A kernel multinomial logistic regression model with Gaussian kernel for
MNIST:
```python
model = keras.Sequential([
keras.Input(shape=(784,)),
RandomFourierFeatures(
output_dim=4096,
scale=10.,
kernel_initializer='gaussian'),
layers.Dense(units=10, activation='softmax'),
])
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['categorical_accuracy']
)
```
A quasi-SVM classifier for MNIST:
```python
model = keras.Sequential([
keras.Input(shape=(784,)),
RandomFourierFeatures(
output_dim=4096,
scale=10.,
kernel_initializer='gaussian'),
layers.Dense(units=10),
])
model.compile(
optimizer='adam',
loss='hinge',
metrics=['categorical_accuracy']
)
```
To use another kernel, just replace the layer creation line with:
```python
random_features_layer = RandomFourierFeatures(
output_dim=500,
kernel_initializer=<my_initializer>,
scale=...,
...)
```
Args:
output_dim: Positive integer, the dimension of the layer's output, i.e.,
the number of random features used to approximate the kernel.
kernel_initializer: Determines the distribution of the parameters of the
random features map (and therefore the kernel approximated by the
layer). It can be either a string identifier or a Keras `Initializer`
instance. Currently only 'gaussian' and 'laplacian' are supported
string identifiers (case insensitive). Note that the kernel matrix is
not trainable.
scale: For Gaussian and Laplacian kernels, this corresponds to a scaling
factor of the corresponding kernel approximated by the layer (see
concrete definitions above). When provided, it should be a positive
float. If None, a default value is used: if the kernel initializer is
set to "gaussian", `scale` defaults to `sqrt(input_dim / 2)`, otherwise,
it defaults to 1.0. Both the approximation error of the kernel and the
classification quality are sensitive to this parameter. If `trainable`
is set to `True`, this parameter is learned end-to-end during training
and the provided value serves as the initial value.
**Note:** When features from this layer are fed to a linear model,
by making `scale` trainable, the resulting optimization problem is
no longer convex (even if the loss function used by the linear model
is convex).
trainable: Whether the scaling parameter of the layer should be trainable.
Defaults to `False`.
name: String, name to use for this layer.
"""
def __init__(
self,
output_dim,
kernel_initializer="gaussian",
scale=None,
trainable=False,
name=None,
**kwargs,
):
if output_dim <= 0:
raise ValueError(
"`output_dim` should be a positive integer. "
f"Received: {output_dim}"
)
if isinstance(kernel_initializer, str):
if kernel_initializer.lower() not in _SUPPORTED_RBF_KERNEL_TYPES:
raise ValueError(
f"Unsupported `kernel_initializer`: {kernel_initializer} "
f"Expected one of: {_SUPPORTED_RBF_KERNEL_TYPES}"
)
if scale is not None and scale <= 0.0:
raise ValueError(
"When provided, `scale` should be a positive float. "
f"Received: {scale}"
)
super().__init__(trainable=trainable, name=name, **kwargs)
self.output_dim = output_dim
self.kernel_initializer = kernel_initializer
self.scale = scale
def build(self, input_shape):
input_shape = tf.TensorShape(input_shape)
# TODO(pmol): Allow higher dimension inputs. Currently the input is
# expected to have shape [batch_size, dimension].
if input_shape.rank != 2:
raise ValueError(
"The rank of the input tensor should be 2. "
f"Received input with rank {input_shape.ndims} instead. "
f"Full input shape received: {input_shape}"
)
if input_shape.dims[1].value is None:
raise ValueError(
"The last dimension of the input tensor should be defined. "
f"Found `None`. Full input shape received: {input_shape}"
)
self.input_spec = input_spec.InputSpec(
ndim=2, axes={1: input_shape.dims[1].value}
)
input_dim = input_shape.dims[1].value
kernel_initializer = _get_random_features_initializer(
self.kernel_initializer, shape=(input_dim, self.output_dim)
)
self.unscaled_kernel = self.add_weight(
name="unscaled_kernel",
shape=(input_dim, self.output_dim),
dtype=tf.float32,
initializer=kernel_initializer,
trainable=False,
)
self.bias = self.add_weight(
name="bias",
shape=(self.output_dim,),
dtype=tf.float32,
initializer=initializers.RandomUniform(
minval=0.0, maxval=2 * np.pi
),
trainable=False,
)
if self.scale is None:
self.scale = _get_default_scale(self.kernel_initializer, input_dim)
self.kernel_scale = self.add_weight(
name="kernel_scale",
shape=(1,),
dtype=tf.float32,
initializer=tf.compat.v1.constant_initializer(self.scale),
trainable=True,
constraint="NonNeg",
)
super().build(input_shape)
def call(self, inputs):
inputs = tf.convert_to_tensor(inputs, dtype=self.dtype)
inputs = tf.cast(inputs, tf.float32)
kernel = (1.0 / self.kernel_scale) * self.unscaled_kernel
outputs = tf.matmul(a=inputs, b=kernel)
outputs = tf.nn.bias_add(outputs, self.bias)
return tf.cos(outputs)
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape)
input_shape = input_shape.with_rank(2)
if input_shape.dims[-1].value is None:
raise ValueError(
"The last dimension of the input tensor should be defined. "
f"Found `None`. Full input shape received: {input_shape}"
)
return input_shape[:-1].concatenate(self.output_dim)
def get_config(self):
kernel_initializer = self.kernel_initializer
if not isinstance(kernel_initializer, str):
kernel_initializer = initializers.serialize(kernel_initializer)
config = {
"output_dim": self.output_dim,
"kernel_initializer": kernel_initializer,
"scale": self.scale,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def _get_random_features_initializer(initializer, shape):
"""Returns Initializer object for random features."""
def _get_cauchy_samples(loc, scale, shape):
probs = np.random.uniform(low=0.0, high=1.0, size=shape)
return loc + scale * np.tan(np.pi * (probs - 0.5))
random_features_initializer = initializer
if isinstance(initializer, str):
if initializer.lower() == "gaussian":
random_features_initializer = initializers.RandomNormal(stddev=1.0)
elif initializer.lower() == "laplacian":
random_features_initializer = initializers.Constant(
_get_cauchy_samples(loc=0.0, scale=1.0, shape=shape)
)
else:
raise ValueError(
f'Unsupported `kernel_initializer`: "{initializer}" '
f"Expected one of: {_SUPPORTED_RBF_KERNEL_TYPES}"
)
return random_features_initializer
def _get_default_scale(initializer, input_dim):
if isinstance(initializer, str) and initializer.lower() == "gaussian":
return np.sqrt(input_dim / 2.0)
return 1.0