Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/reshaping/zero_padding3d.py
2023-06-19 00:49:18 +02:00

164 lines
6.5 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras zero-padding layer for 3D input."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
from keras.utils import conv_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.ZeroPadding3D")
class ZeroPadding3D(Layer):
"""Zero-padding layer for 3D data (spatial or spatio-temporal).
Examples:
>>> input_shape = (1, 1, 2, 2, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> y = tf.keras.layers.ZeroPadding3D(padding=2)(x)
>>> print(y.shape)
(1, 5, 6, 6, 3)
Args:
padding: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
- If int: the same symmetric padding
is applied to height and width.
- If tuple of 3 ints:
interpreted as two different
symmetric padding values for height and width:
`(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad)`.
- If tuple of 3 tuples of 2 ints:
interpreted as
`((left_dim1_pad, right_dim1_pad), (left_dim2_pad,
right_dim2_pad), (left_dim3_pad, right_dim3_pad))`
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `channels_first` corresponds to inputs with shape
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, first_axis_to_pad, second_axis_to_pad,
third_axis_to_pad, depth)`
- If `data_format` is `"channels_first"`:
`(batch_size, depth, first_axis_to_pad, second_axis_to_pad,
third_axis_to_pad)`
Output shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, first_padded_axis, second_padded_axis,
third_axis_to_pad, depth)`
- If `data_format` is `"channels_first"`:
`(batch_size, depth, first_padded_axis, second_padded_axis,
third_axis_to_pad)`
"""
def __init__(self, padding=(1, 1, 1), data_format=None, **kwargs):
super().__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
if isinstance(padding, int):
self.padding = (
(padding, padding),
(padding, padding),
(padding, padding),
)
elif hasattr(padding, "__len__"):
if len(padding) != 3:
raise ValueError(
f"`padding` should have 3 elements. Received: {padding}."
)
dim1_padding = conv_utils.normalize_tuple(
padding[0], 2, "1st entry of padding", allow_zero=True
)
dim2_padding = conv_utils.normalize_tuple(
padding[1], 2, "2nd entry of padding", allow_zero=True
)
dim3_padding = conv_utils.normalize_tuple(
padding[2], 2, "3rd entry of padding", allow_zero=True
)
self.padding = (dim1_padding, dim2_padding, dim3_padding)
else:
raise ValueError(
"`padding` should be either an int, "
"a tuple of 3 ints "
"(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad), "
"or a tuple of 3 tuples of 2 ints "
"((left_dim1_pad, right_dim1_pad),"
" (left_dim2_pad, right_dim2_pad),"
" (left_dim3_pad, right_dim2_pad)). "
f"Received: {padding}."
)
self.input_spec = InputSpec(ndim=5)
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape).as_list()
if self.data_format == "channels_first":
if input_shape[2] is not None:
dim1 = input_shape[2] + self.padding[0][0] + self.padding[0][1]
else:
dim1 = None
if input_shape[3] is not None:
dim2 = input_shape[3] + self.padding[1][0] + self.padding[1][1]
else:
dim2 = None
if input_shape[4] is not None:
dim3 = input_shape[4] + self.padding[2][0] + self.padding[2][1]
else:
dim3 = None
return tf.TensorShape(
[input_shape[0], input_shape[1], dim1, dim2, dim3]
)
elif self.data_format == "channels_last":
if input_shape[1] is not None:
dim1 = input_shape[1] + self.padding[0][0] + self.padding[0][1]
else:
dim1 = None
if input_shape[2] is not None:
dim2 = input_shape[2] + self.padding[1][0] + self.padding[1][1]
else:
dim2 = None
if input_shape[3] is not None:
dim3 = input_shape[3] + self.padding[2][0] + self.padding[2][1]
else:
dim3 = None
return tf.TensorShape(
[input_shape[0], dim1, dim2, dim3, input_shape[4]]
)
def call(self, inputs):
return backend.spatial_3d_padding(
inputs, padding=self.padding, data_format=self.data_format
)
def get_config(self):
config = {"padding": self.padding, "data_format": self.data_format}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))