Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/optimizers/adamw.py
2023-06-19 00:49:18 +02:00

229 lines
8.6 KiB
Python

# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""AdamW optimizer implementation."""
import tensorflow.compat.v2 as tf
from keras.optimizers import optimizer
from keras.saving.object_registration import register_keras_serializable
# isort: off
from tensorflow.python.util.tf_export import keras_export
@register_keras_serializable()
@keras_export(
"keras.optimizers.AdamW", "keras.optimizers.experimental.AdamW", v1=[]
)
class AdamW(optimizer.Optimizer):
r"""Optimizer that implements the AdamW algorithm.
AdamW optimization is a stochastic gradient descent method that is based on
adaptive estimation of first-order and second-order moments with an added
method to decay weights per the techniques discussed in the paper,
'Decoupled Weight Decay Regularization' by
[Loshchilov, Hutter et al., 2019](https://arxiv.org/abs/1711.05101).
According to
[Kingma et al., 2014](http://arxiv.org/abs/1412.6980),
the underying Adam method is "*computationally
efficient, has little memory requirement, invariant to diagonal rescaling of
gradients, and is well suited for problems that are large in terms of
data/parameters*".
Args:
learning_rate: A `tf.Tensor`, floating point value, a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
that takes no arguments and returns the actual value to use. The
learning rate. Defaults to 0.001.
weight_decay: A `tf.Tensor`, floating point value. The weight decay.
Defaults to 0.004.
beta_1: A float value or a constant float tensor, or a callable
that takes no arguments and returns the actual value to use. The
exponential decay rate for the 1st moment estimates. Defaults to 0.9.
beta_2: A float value or a constant float tensor, or a callable
that takes no arguments and returns the actual value to use. The
exponential decay rate for the 2nd moment estimates. Defaults to 0.999.
epsilon: A small constant for numerical stability. This epsilon is
"epsilon hat" in the Kingma and Ba paper (in the formula just before
Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to
1e-7.
amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from
the paper "On the Convergence of Adam and beyond". Defaults to `False`.
{{base_optimizer_keyword_args}}
Reference:
- [Loshchilov et al., 2019](https://arxiv.org/abs/1711.05101)
- [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) for `adam`
- [Reddi et al., 2018](
https://openreview.net/pdf?id=ryQu7f-RZ) for `amsgrad`.
Notes:
The sparse implementation of this algorithm (used when the gradient is an
IndexedSlices object, typically because of `tf.gather` or an embedding
lookup in the forward pass) does apply momentum to variable slices even if
they were not used in the forward pass (meaning they have a gradient equal
to zero). Momentum decay (beta1) is also applied to the entire momentum
accumulator. This means that the sparse behavior is equivalent to the dense
behavior (in contrast to some momentum implementations which ignore momentum
unless a variable slice was actually used).
"""
def __init__(
self,
learning_rate=0.001,
weight_decay=0.004,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-7,
amsgrad=False,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
jit_compile=True,
name="AdamW",
**kwargs
):
super().__init__(
name=name,
clipnorm=clipnorm,
clipvalue=clipvalue,
global_clipnorm=global_clipnorm,
use_ema=use_ema,
ema_momentum=ema_momentum,
ema_overwrite_frequency=ema_overwrite_frequency,
jit_compile=jit_compile,
**kwargs
)
self._learning_rate = self._build_learning_rate(learning_rate)
self.weight_decay = weight_decay
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
self.amsgrad = amsgrad
if self.weight_decay is None:
raise ValueError(
"Missing value of `weight_decay` which is required and"
" must be a float value."
)
def build(self, var_list):
"""Initialize optimizer variables.
AdamW optimizer has 3 types of variables: momentums, velocities and
velocity_hat (only set when amsgrad is applied),
Args:
var_list: list of model variables to build AdamW variables on.
"""
super().build(var_list)
if hasattr(self, "_built") and self._built:
return
self._built = True
self._momentums = []
self._velocities = []
for var in var_list:
self._momentums.append(
self.add_variable_from_reference(
model_variable=var, variable_name="m"
)
)
self._velocities.append(
self.add_variable_from_reference(
model_variable=var, variable_name="v"
)
)
if self.amsgrad:
self._velocity_hats = []
for var in var_list:
self._velocity_hats.append(
self.add_variable_from_reference(
model_variable=var, variable_name="vhat"
)
)
def update_step(self, gradient, variable):
"""Update step given gradient and the associated model variable."""
beta_1_power = None
beta_2_power = None
lr = tf.cast(self.learning_rate, variable.dtype)
local_step = tf.cast(self.iterations + 1, variable.dtype)
beta_1_power = tf.pow(tf.cast(self.beta_1, variable.dtype), local_step)
beta_2_power = tf.pow(tf.cast(self.beta_2, variable.dtype), local_step)
var_key = self._var_key(variable)
m = self._momentums[self._index_dict[var_key]]
v = self._velocities[self._index_dict[var_key]]
alpha = lr * tf.sqrt(1 - beta_2_power) / (1 - beta_1_power)
if isinstance(gradient, tf.IndexedSlices):
# Sparse gradients.
m.assign_add(-m * (1 - self.beta_1))
m.scatter_add(
tf.IndexedSlices(
gradient.values * (1 - self.beta_1), gradient.indices
)
)
v.assign_add(-v * (1 - self.beta_2))
v.scatter_add(
tf.IndexedSlices(
tf.square(gradient.values) * (1 - self.beta_2),
gradient.indices,
)
)
if self.amsgrad:
v_hat = self._velocity_hats[self._index_dict[var_key]]
v_hat.assign(tf.maximum(v_hat, v))
v = v_hat
variable.assign_sub((m * alpha) / (tf.sqrt(v) + self.epsilon))
else:
# Dense gradients.
m.assign_add((gradient - m) * (1 - self.beta_1))
v.assign_add((tf.square(gradient) - v) * (1 - self.beta_2))
if self.amsgrad:
v_hat = self._velocity_hats[self._index_dict[var_key]]
v_hat.assign(tf.maximum(v_hat, v))
v = v_hat
variable.assign_sub((m * alpha) / (tf.sqrt(v) + self.epsilon))
def get_config(self):
config = super().get_config()
config.update(
{
"learning_rate": self._serialize_hyperparameter(
self._learning_rate
),
"weight_decay": self.weight_decay,
"beta_1": self.beta_1,
"beta_2": self.beta_2,
"epsilon": self.epsilon,
"amsgrad": self.amsgrad,
}
)
return config
AdamW.__doc__ = AdamW.__doc__.replace(
"{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args
)