229 lines
8.6 KiB
Python
229 lines
8.6 KiB
Python
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""AdamW optimizer implementation."""
|
|
|
|
|
|
import tensorflow.compat.v2 as tf
|
|
|
|
from keras.optimizers import optimizer
|
|
from keras.saving.object_registration import register_keras_serializable
|
|
|
|
# isort: off
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
|
|
|
|
@register_keras_serializable()
|
|
@keras_export(
|
|
"keras.optimizers.AdamW", "keras.optimizers.experimental.AdamW", v1=[]
|
|
)
|
|
class AdamW(optimizer.Optimizer):
|
|
r"""Optimizer that implements the AdamW algorithm.
|
|
|
|
AdamW optimization is a stochastic gradient descent method that is based on
|
|
adaptive estimation of first-order and second-order moments with an added
|
|
method to decay weights per the techniques discussed in the paper,
|
|
'Decoupled Weight Decay Regularization' by
|
|
[Loshchilov, Hutter et al., 2019](https://arxiv.org/abs/1711.05101).
|
|
|
|
According to
|
|
[Kingma et al., 2014](http://arxiv.org/abs/1412.6980),
|
|
the underying Adam method is "*computationally
|
|
efficient, has little memory requirement, invariant to diagonal rescaling of
|
|
gradients, and is well suited for problems that are large in terms of
|
|
data/parameters*".
|
|
|
|
Args:
|
|
learning_rate: A `tf.Tensor`, floating point value, a schedule that is a
|
|
`tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable
|
|
that takes no arguments and returns the actual value to use. The
|
|
learning rate. Defaults to 0.001.
|
|
weight_decay: A `tf.Tensor`, floating point value. The weight decay.
|
|
Defaults to 0.004.
|
|
beta_1: A float value or a constant float tensor, or a callable
|
|
that takes no arguments and returns the actual value to use. The
|
|
exponential decay rate for the 1st moment estimates. Defaults to 0.9.
|
|
beta_2: A float value or a constant float tensor, or a callable
|
|
that takes no arguments and returns the actual value to use. The
|
|
exponential decay rate for the 2nd moment estimates. Defaults to 0.999.
|
|
epsilon: A small constant for numerical stability. This epsilon is
|
|
"epsilon hat" in the Kingma and Ba paper (in the formula just before
|
|
Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to
|
|
1e-7.
|
|
amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from
|
|
the paper "On the Convergence of Adam and beyond". Defaults to `False`.
|
|
{{base_optimizer_keyword_args}}
|
|
|
|
Reference:
|
|
- [Loshchilov et al., 2019](https://arxiv.org/abs/1711.05101)
|
|
- [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) for `adam`
|
|
- [Reddi et al., 2018](
|
|
https://openreview.net/pdf?id=ryQu7f-RZ) for `amsgrad`.
|
|
|
|
Notes:
|
|
|
|
The sparse implementation of this algorithm (used when the gradient is an
|
|
IndexedSlices object, typically because of `tf.gather` or an embedding
|
|
lookup in the forward pass) does apply momentum to variable slices even if
|
|
they were not used in the forward pass (meaning they have a gradient equal
|
|
to zero). Momentum decay (beta1) is also applied to the entire momentum
|
|
accumulator. This means that the sparse behavior is equivalent to the dense
|
|
behavior (in contrast to some momentum implementations which ignore momentum
|
|
unless a variable slice was actually used).
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
learning_rate=0.001,
|
|
weight_decay=0.004,
|
|
beta_1=0.9,
|
|
beta_2=0.999,
|
|
epsilon=1e-7,
|
|
amsgrad=False,
|
|
clipnorm=None,
|
|
clipvalue=None,
|
|
global_clipnorm=None,
|
|
use_ema=False,
|
|
ema_momentum=0.99,
|
|
ema_overwrite_frequency=None,
|
|
jit_compile=True,
|
|
name="AdamW",
|
|
**kwargs
|
|
):
|
|
super().__init__(
|
|
name=name,
|
|
clipnorm=clipnorm,
|
|
clipvalue=clipvalue,
|
|
global_clipnorm=global_clipnorm,
|
|
use_ema=use_ema,
|
|
ema_momentum=ema_momentum,
|
|
ema_overwrite_frequency=ema_overwrite_frequency,
|
|
jit_compile=jit_compile,
|
|
**kwargs
|
|
)
|
|
self._learning_rate = self._build_learning_rate(learning_rate)
|
|
self.weight_decay = weight_decay
|
|
self.beta_1 = beta_1
|
|
self.beta_2 = beta_2
|
|
self.epsilon = epsilon
|
|
self.amsgrad = amsgrad
|
|
|
|
if self.weight_decay is None:
|
|
raise ValueError(
|
|
"Missing value of `weight_decay` which is required and"
|
|
" must be a float value."
|
|
)
|
|
|
|
def build(self, var_list):
|
|
"""Initialize optimizer variables.
|
|
|
|
AdamW optimizer has 3 types of variables: momentums, velocities and
|
|
velocity_hat (only set when amsgrad is applied),
|
|
|
|
Args:
|
|
var_list: list of model variables to build AdamW variables on.
|
|
"""
|
|
super().build(var_list)
|
|
if hasattr(self, "_built") and self._built:
|
|
return
|
|
self._built = True
|
|
self._momentums = []
|
|
self._velocities = []
|
|
for var in var_list:
|
|
self._momentums.append(
|
|
self.add_variable_from_reference(
|
|
model_variable=var, variable_name="m"
|
|
)
|
|
)
|
|
self._velocities.append(
|
|
self.add_variable_from_reference(
|
|
model_variable=var, variable_name="v"
|
|
)
|
|
)
|
|
if self.amsgrad:
|
|
self._velocity_hats = []
|
|
for var in var_list:
|
|
self._velocity_hats.append(
|
|
self.add_variable_from_reference(
|
|
model_variable=var, variable_name="vhat"
|
|
)
|
|
)
|
|
|
|
def update_step(self, gradient, variable):
|
|
"""Update step given gradient and the associated model variable."""
|
|
beta_1_power = None
|
|
beta_2_power = None
|
|
lr = tf.cast(self.learning_rate, variable.dtype)
|
|
local_step = tf.cast(self.iterations + 1, variable.dtype)
|
|
beta_1_power = tf.pow(tf.cast(self.beta_1, variable.dtype), local_step)
|
|
beta_2_power = tf.pow(tf.cast(self.beta_2, variable.dtype), local_step)
|
|
|
|
var_key = self._var_key(variable)
|
|
m = self._momentums[self._index_dict[var_key]]
|
|
v = self._velocities[self._index_dict[var_key]]
|
|
|
|
alpha = lr * tf.sqrt(1 - beta_2_power) / (1 - beta_1_power)
|
|
|
|
if isinstance(gradient, tf.IndexedSlices):
|
|
# Sparse gradients.
|
|
m.assign_add(-m * (1 - self.beta_1))
|
|
m.scatter_add(
|
|
tf.IndexedSlices(
|
|
gradient.values * (1 - self.beta_1), gradient.indices
|
|
)
|
|
)
|
|
v.assign_add(-v * (1 - self.beta_2))
|
|
v.scatter_add(
|
|
tf.IndexedSlices(
|
|
tf.square(gradient.values) * (1 - self.beta_2),
|
|
gradient.indices,
|
|
)
|
|
)
|
|
if self.amsgrad:
|
|
v_hat = self._velocity_hats[self._index_dict[var_key]]
|
|
v_hat.assign(tf.maximum(v_hat, v))
|
|
v = v_hat
|
|
variable.assign_sub((m * alpha) / (tf.sqrt(v) + self.epsilon))
|
|
else:
|
|
# Dense gradients.
|
|
m.assign_add((gradient - m) * (1 - self.beta_1))
|
|
v.assign_add((tf.square(gradient) - v) * (1 - self.beta_2))
|
|
if self.amsgrad:
|
|
v_hat = self._velocity_hats[self._index_dict[var_key]]
|
|
v_hat.assign(tf.maximum(v_hat, v))
|
|
v = v_hat
|
|
variable.assign_sub((m * alpha) / (tf.sqrt(v) + self.epsilon))
|
|
|
|
def get_config(self):
|
|
config = super().get_config()
|
|
|
|
config.update(
|
|
{
|
|
"learning_rate": self._serialize_hyperparameter(
|
|
self._learning_rate
|
|
),
|
|
"weight_decay": self.weight_decay,
|
|
"beta_1": self.beta_1,
|
|
"beta_2": self.beta_2,
|
|
"epsilon": self.epsilon,
|
|
"amsgrad": self.amsgrad,
|
|
}
|
|
)
|
|
return config
|
|
|
|
|
|
AdamW.__doc__ = AdamW.__doc__.replace(
|
|
"{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args
|
|
)
|