Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/optimizers/schedules/learning_rate_schedule.py
2023-06-19 00:49:18 +02:00

1163 lines
43 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Various learning rate schedule functions."""
import abc
import math
import tensorflow.compat.v2 as tf
from keras import backend
from keras.saving.legacy import serialization as legacy_serialization
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.optimizers.schedules.LearningRateSchedule")
class LearningRateSchedule:
"""The learning rate schedule base class.
You can use a learning rate schedule to modulate how the learning rate
of your optimizer changes over time.
Several built-in learning rate schedules are available, such as
`tf.keras.optimizers.schedules.ExponentialDecay` or
`tf.keras.optimizers.schedules.PiecewiseConstantDecay`:
```python
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=1e-2,
decay_steps=10000,
decay_rate=0.9)
optimizer = keras.optimizers.SGD(learning_rate=lr_schedule)
```
A `LearningRateSchedule` instance can be passed in as the `learning_rate`
argument of any optimizer.
To implement your own schedule object, you should implement the `__call__`
method, which takes a `step` argument (scalar integer tensor, the
current training step count).
Like for any other Keras object, you can also optionally
make your object serializable by implementing the `get_config`
and `from_config` methods.
Example:
```python
class MyLRSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, initial_learning_rate):
self.initial_learning_rate = initial_learning_rate
def __call__(self, step):
return self.initial_learning_rate / (step + 1)
optimizer = tf.keras.optimizers.SGD(learning_rate=MyLRSchedule(0.1))
```
"""
@abc.abstractmethod
def __call__(self, step):
raise NotImplementedError(
f"Learning rate schedule '{self.__class__.__name__}' "
"must override `__call__(self, step)`."
)
@abc.abstractmethod
def get_config(self):
raise NotImplementedError(
f"Learning rate schedule '{self.__class__.__name__}' "
"must override `get_config()` in order to be serializable."
)
@classmethod
def from_config(cls, config):
"""Instantiates a `LearningRateSchedule` from its config.
Args:
config: Output of `get_config()`.
Returns:
A `LearningRateSchedule` instance.
"""
return cls(**config)
@keras_export("keras.optimizers.schedules.ExponentialDecay")
class ExponentialDecay(LearningRateSchedule):
"""A LearningRateSchedule that uses an exponential decay schedule.
When training a model, it is often useful to lower the learning rate as
the training progresses. This schedule applies an exponential decay function
to an optimizer step, given a provided initial learning rate.
The schedule is a 1-arg callable that produces a decayed learning
rate when passed the current optimizer step. This can be useful for changing
the learning rate value across different invocations of optimizer functions.
It is computed as:
```python
def decayed_learning_rate(step):
return initial_learning_rate * decay_rate ^ (step / decay_steps)
```
If the argument `staircase` is `True`, then `step / decay_steps` is
an integer division and the decayed learning rate follows a
staircase function.
You can pass this schedule directly into a `tf.keras.optimizers.Optimizer`
as the learning rate.
Example: When fitting a Keras model, decay every 100000 steps with a base
of 0.96:
```python
initial_learning_rate = 0.1
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=100000,
decay_rate=0.96,
staircase=True)
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=lr_schedule),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels, epochs=5)
```
The learning rate schedule is also serializable and deserializable using
`tf.keras.optimizers.schedules.serialize` and
`tf.keras.optimizers.schedules.deserialize`.
Returns:
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar `Tensor` of the same
type as `initial_learning_rate`.
"""
def __init__(
self,
initial_learning_rate,
decay_steps,
decay_rate,
staircase=False,
name=None,
):
"""Applies exponential decay to the learning rate.
Args:
initial_learning_rate: A scalar `float32` or `float64` `Tensor` or a
Python number. The initial learning rate.
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
Must be positive. See the decay computation above.
decay_rate: A scalar `float32` or `float64` `Tensor` or a
Python number. The decay rate.
staircase: Boolean. If `True` decay the learning rate at discrete
intervals
name: String. Optional name of the operation. Defaults to
'ExponentialDecay'.
"""
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.decay_steps = decay_steps
self.decay_rate = decay_rate
self.staircase = staircase
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or "ExponentialDecay") as name:
initial_learning_rate = tf.convert_to_tensor(
self.initial_learning_rate, name="initial_learning_rate"
)
dtype = initial_learning_rate.dtype
decay_steps = tf.cast(self.decay_steps, dtype)
decay_rate = tf.cast(self.decay_rate, dtype)
global_step_recomp = tf.cast(step, dtype)
p = global_step_recomp / decay_steps
if self.staircase:
p = tf.floor(p)
return tf.multiply(
initial_learning_rate, tf.pow(decay_rate, p), name=name
)
def get_config(self):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_steps": self.decay_steps,
"decay_rate": self.decay_rate,
"staircase": self.staircase,
"name": self.name,
}
@keras_export("keras.optimizers.schedules.PiecewiseConstantDecay")
class PiecewiseConstantDecay(LearningRateSchedule):
"""A LearningRateSchedule that uses a piecewise constant decay schedule.
The function returns a 1-arg callable to compute the piecewise constant
when passed the current optimizer step. This can be useful for changing the
learning rate value across different invocations of optimizer functions.
Example: use a learning rate that's 1.0 for the first 100001 steps, 0.5
for the next 10000 steps, and 0.1 for any additional steps.
```python
step = tf.Variable(0, trainable=False)
boundaries = [100000, 110000]
values = [1.0, 0.5, 0.1]
learning_rate_fn = keras.optimizers.schedules.PiecewiseConstantDecay(
boundaries, values)
# Later, whenever we perform an optimization step, we pass in the step.
learning_rate = learning_rate_fn(step)
```
You can pass this schedule directly into a `tf.keras.optimizers.Optimizer`
as the learning rate. The learning rate schedule is also serializable and
deserializable using `tf.keras.optimizers.schedules.serialize` and
`tf.keras.optimizers.schedules.deserialize`.
Returns:
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar `Tensor` of the same
type as the boundary tensors.
The output of the 1-arg function that takes the `step`
is `values[0]` when `step <= boundaries[0]`,
`values[1]` when `step > boundaries[0]` and `step <= boundaries[1]`, ...,
and values[-1] when `step > boundaries[-1]`.
"""
def __init__(self, boundaries, values, name=None):
"""Piecewise constant from boundaries and interval values.
Args:
boundaries: A list of `Tensor`s or `int`s or `float`s with strictly
increasing entries, and with all elements having the same type as
the optimizer step.
values: A list of `Tensor`s or `float`s or `int`s that specifies the
values for the intervals defined by `boundaries`. It should have one
more element than `boundaries`, and all elements should have the
same type.
name: A string. Optional name of the operation. Defaults to
'PiecewiseConstant'.
Raises:
ValueError: if the number of elements in the lists do not match.
"""
super().__init__()
if len(boundaries) != len(values) - 1:
raise ValueError(
"The length of boundaries should be 1 less than the length of "
f"values. Received: boundaries={boundaries} of length "
f"{len(boundaries)}, and values={values} "
f"of length {len(values)}."
)
self.boundaries = boundaries
self.values = values
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or "PiecewiseConstant"):
boundaries = tf.nest.map_structure(
tf.convert_to_tensor, tf.nest.flatten(self.boundaries)
)
values = tf.nest.map_structure(
tf.convert_to_tensor, tf.nest.flatten(self.values)
)
x_recomp = tf.convert_to_tensor(step)
for i, b in enumerate(boundaries):
if b.dtype.base_dtype != x_recomp.dtype.base_dtype:
# We cast the boundaries to have the same type as the step
b = tf.cast(b, x_recomp.dtype.base_dtype)
boundaries[i] = b
pred_fn_pairs = []
pred_fn_pairs.append((x_recomp <= boundaries[0], lambda: values[0]))
pred_fn_pairs.append(
(x_recomp > boundaries[-1], lambda: values[-1])
)
for low, high, v in zip(
boundaries[:-1], boundaries[1:], values[1:-1]
):
# Need to bind v here; can do this with lambda v=v: ...
pred = (x_recomp > low) & (x_recomp <= high)
pred_fn_pairs.append((pred, lambda v=v: v))
# The default isn't needed here because our conditions are mutually
# exclusive and exhaustive, but tf.case requires it.
default = lambda: values[0]
return tf.case(pred_fn_pairs, default, exclusive=True)
def get_config(self):
return {
"boundaries": self.boundaries,
"values": self.values,
"name": self.name,
}
@keras_export("keras.optimizers.schedules.PolynomialDecay")
class PolynomialDecay(LearningRateSchedule):
"""A LearningRateSchedule that uses a polynomial decay schedule.
It is commonly observed that a monotonically decreasing learning rate, whose
degree of change is carefully chosen, results in a better performing model.
This schedule applies a polynomial decay function to an optimizer step,
given a provided `initial_learning_rate`, to reach an `end_learning_rate`
in the given `decay_steps`.
It requires a `step` value to compute the decayed learning rate. You
can just pass a TensorFlow variable that you increment at each training
step.
The schedule is a 1-arg callable that produces a decayed learning rate
when passed the current optimizer step. This can be useful for changing the
learning rate value across different invocations of optimizer functions.
It is computed as:
```python
def decayed_learning_rate(step):
step = min(step, decay_steps)
return ((initial_learning_rate - end_learning_rate) *
(1 - step / decay_steps) ^ (power)
) + end_learning_rate
```
If `cycle` is True then a multiple of `decay_steps` is used, the first one
that is bigger than `step`.
```python
def decayed_learning_rate(step):
decay_steps = decay_steps * ceil(step / decay_steps)
return ((initial_learning_rate - end_learning_rate) *
(1 - step / decay_steps) ^ (power)
) + end_learning_rate
```
You can pass this schedule directly into a `tf.keras.optimizers.Optimizer`
as the learning rate.
Example: Fit a model while decaying from 0.1 to 0.01 in 10000 steps using
sqrt (i.e. power=0.5):
```python
...
starter_learning_rate = 0.1
end_learning_rate = 0.01
decay_steps = 10000
learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(
starter_learning_rate,
decay_steps,
end_learning_rate,
power=0.5)
model.compile(optimizer=tf.keras.optimizers.SGD(
learning_rate=learning_rate_fn),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels, epochs=5)
```
The learning rate schedule is also serializable and deserializable using
`tf.keras.optimizers.schedules.serialize` and
`tf.keras.optimizers.schedules.deserialize`.
Returns:
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar `Tensor` of the same
type as `initial_learning_rate`.
"""
def __init__(
self,
initial_learning_rate,
decay_steps,
end_learning_rate=0.0001,
power=1.0,
cycle=False,
name=None,
):
"""Applies a polynomial decay to the learning rate.
Args:
initial_learning_rate: A scalar `float32` or `float64` `Tensor` or a
Python number. The initial learning rate.
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
Must be positive. See the decay computation above.
end_learning_rate: A scalar `float32` or `float64` `Tensor` or a
Python number. The minimal end learning rate.
power: A scalar `float32` or `float64` `Tensor` or a
Python number. The power of the polynomial. Defaults to linear, 1.0.
cycle: A boolean, whether or not it should cycle beyond decay_steps.
name: String. Optional name of the operation. Defaults to
'PolynomialDecay'.
"""
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.decay_steps = decay_steps
self.end_learning_rate = end_learning_rate
self.power = power
self.cycle = cycle
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or "PolynomialDecay") as name:
initial_learning_rate = tf.convert_to_tensor(
self.initial_learning_rate, name="initial_learning_rate"
)
dtype = initial_learning_rate.dtype
end_learning_rate = tf.cast(self.end_learning_rate, dtype)
power = tf.cast(self.power, dtype)
global_step_recomp = tf.cast(step, dtype)
decay_steps_recomp = tf.cast(self.decay_steps, dtype)
if self.cycle:
# Find the first multiple of decay_steps that is bigger than
# global_step. If global_step is zero set the multiplier to 1
multiplier = tf.where(
tf.equal(global_step_recomp, 0),
1.0,
tf.math.ceil(global_step_recomp / self.decay_steps),
)
decay_steps_recomp = tf.multiply(decay_steps_recomp, multiplier)
else:
# Make sure that the global_step used is not bigger than
# decay_steps.
global_step_recomp = tf.minimum(
global_step_recomp, decay_steps_recomp
)
p = tf.divide(global_step_recomp, decay_steps_recomp)
return tf.add(
tf.multiply(
initial_learning_rate - end_learning_rate,
tf.pow(1 - p, power),
),
end_learning_rate,
name=name,
)
def get_config(self):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_steps": self.decay_steps,
"end_learning_rate": self.end_learning_rate,
"power": self.power,
"cycle": self.cycle,
"name": self.name,
}
@keras_export("keras.optimizers.schedules.InverseTimeDecay")
class InverseTimeDecay(LearningRateSchedule):
"""A LearningRateSchedule that uses an inverse time decay schedule.
When training a model, it is often useful to lower the learning rate as
the training progresses. This schedule applies the inverse decay function
to an optimizer step, given a provided initial learning rate.
It requires a `step` value to compute the decayed learning rate. You can
just pass a TensorFlow variable that you increment at each training step.
The schedule is a 1-arg callable that produces a decayed learning
rate when passed the current optimizer step. This can be useful for changing
the learning rate value across different invocations of optimizer functions.
It is computed as:
```python
def decayed_learning_rate(step):
return initial_learning_rate / (1 + decay_rate * step / decay_step)
```
or, if `staircase` is `True`, as:
```python
def decayed_learning_rate(step):
return initial_learning_rate / (1 + decay_rate * floor(step / decay_step))
```
You can pass this schedule directly into a `tf.keras.optimizers.Optimizer`
as the learning rate.
Example: Fit a Keras model when decaying 1/t with a rate of 0.5:
```python
...
initial_learning_rate = 0.1
decay_steps = 1.0
decay_rate = 0.5
learning_rate_fn = keras.optimizers.schedules.InverseTimeDecay(
initial_learning_rate, decay_steps, decay_rate)
model.compile(optimizer=tf.keras.optimizers.SGD(
learning_rate=learning_rate_fn),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels, epochs=5)
```
Returns:
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar `Tensor` of the same
type as `initial_learning_rate`.
"""
def __init__(
self,
initial_learning_rate,
decay_steps,
decay_rate,
staircase=False,
name=None,
):
"""Applies inverse time decay to the initial learning rate.
Args:
initial_learning_rate: A scalar `float32` or `float64` `Tensor` or a
Python number. The initial learning rate.
decay_steps: How often to apply decay.
decay_rate: A Python number. The decay rate.
staircase: Whether to apply decay in a discrete staircase, as opposed
to continuous, fashion.
name: String. Optional name of the operation. Defaults to
'InverseTimeDecay'.
"""
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.decay_steps = decay_steps
self.decay_rate = decay_rate
self.staircase = staircase
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or "InverseTimeDecay") as name:
initial_learning_rate = tf.convert_to_tensor(
self.initial_learning_rate, name="initial_learning_rate"
)
dtype = initial_learning_rate.dtype
decay_steps = tf.cast(self.decay_steps, dtype)
decay_rate = tf.cast(self.decay_rate, dtype)
global_step_recomp = tf.cast(step, dtype)
p = global_step_recomp / decay_steps
if self.staircase:
p = tf.floor(p)
const = tf.cast(tf.constant(1), dtype)
denom = tf.add(const, tf.multiply(decay_rate, p))
return tf.divide(initial_learning_rate, denom, name=name)
def get_config(self):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_steps": self.decay_steps,
"decay_rate": self.decay_rate,
"staircase": self.staircase,
"name": self.name,
}
@keras_export(
"keras.optimizers.schedules.CosineDecay", "keras.experimental.CosineDecay"
)
class CosineDecay(LearningRateSchedule):
"""A LearningRateSchedule that uses a cosine decay schedule.
See [Loshchilov & Hutter, ICLR2016](https://arxiv.org/abs/1608.03983),
SGDR: Stochastic Gradient Descent with Warm Restarts.
When training a model, it is often useful to lower the learning rate as
the training progresses. This schedule applies a cosine decay function
to an optimizer step, given a provided initial learning rate.
It requires a `step` value to compute the decayed learning rate. You can
just pass a TensorFlow variable that you increment at each training step.
The schedule is a 1-arg callable that produces a decayed learning
rate when passed the current optimizer step. This can be useful for changing
the learning rate value across different invocations of optimizer functions.
It is computed as:
```python
def decayed_learning_rate(step):
step = min(step, decay_steps)
cosine_decay = 0.5 * (1 + cos(pi * step / decay_steps))
decayed = (1 - alpha) * cosine_decay + alpha
return initial_learning_rate * decayed
```
Example usage:
```python
decay_steps = 1000
lr_decayed_fn = tf.keras.optimizers.schedules.CosineDecay(
initial_learning_rate, decay_steps)
```
You can pass this schedule directly into a `tf.keras.optimizers.Optimizer`
as the learning rate. The learning rate schedule is also serializable and
deserializable using `tf.keras.optimizers.schedules.serialize` and
`tf.keras.optimizers.schedules.deserialize`.
Returns:
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar `Tensor` of the same
type as `initial_learning_rate`.
"""
def __init__(
self, initial_learning_rate, decay_steps, alpha=0.0, name=None
):
"""Applies cosine decay to the learning rate.
Args:
initial_learning_rate: A scalar `float32` or `float64` Tensor or a
Python number. The initial learning rate.
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
Number of steps to decay over.
alpha: A scalar `float32` or `float64` Tensor or a Python number.
Minimum learning rate value as a fraction of initial_learning_rate.
name: String. Optional name of the operation. Defaults to
'CosineDecay'.
"""
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.decay_steps = decay_steps
self.alpha = alpha
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or "CosineDecay"):
initial_learning_rate = tf.convert_to_tensor(
self.initial_learning_rate, name="initial_learning_rate"
)
dtype = initial_learning_rate.dtype
decay_steps = tf.cast(self.decay_steps, dtype)
global_step_recomp = tf.cast(step, dtype)
global_step_recomp = tf.minimum(global_step_recomp, decay_steps)
completed_fraction = global_step_recomp / decay_steps
cosine_decayed = 0.5 * (
1.0
+ tf.cos(tf.constant(math.pi, dtype=dtype) * completed_fraction)
)
decayed = (1 - self.alpha) * cosine_decayed + self.alpha
return tf.multiply(initial_learning_rate, decayed)
def get_config(self):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_steps": self.decay_steps,
"alpha": self.alpha,
"name": self.name,
}
@keras_export(
"keras.optimizers.schedules.CosineDecayRestarts",
"keras.experimental.CosineDecayRestarts",
)
class CosineDecayRestarts(LearningRateSchedule):
"""A LearningRateSchedule that uses a cosine decay schedule with restarts.
See [Loshchilov & Hutter, ICLR2016](https://arxiv.org/abs/1608.03983),
SGDR: Stochastic Gradient Descent with Warm Restarts.
When training a model, it is often useful to lower the learning rate as
the training progresses. This schedule applies a cosine decay function with
restarts to an optimizer step, given a provided initial learning rate.
It requires a `step` value to compute the decayed learning rate. You can
just pass a TensorFlow variable that you increment at each training step.
The schedule is a 1-arg callable that produces a decayed learning
rate when passed the current optimizer step. This can be useful for changing
the learning rate value across different invocations of optimizer functions.
The learning rate multiplier first decays
from 1 to `alpha` for `first_decay_steps` steps. Then, a warm
restart is performed. Each new warm restart runs for `t_mul` times more
steps and with `m_mul` times initial learning rate as the new learning rate.
Example usage:
```python
first_decay_steps = 1000
lr_decayed_fn = (
tf.keras.optimizers.schedules.CosineDecayRestarts(
initial_learning_rate,
first_decay_steps))
```
You can pass this schedule directly into a `tf.keras.optimizers.Optimizer`
as the learning rate. The learning rate schedule is also serializable and
deserializable using `tf.keras.optimizers.schedules.serialize` and
`tf.keras.optimizers.schedules.deserialize`.
Returns:
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar `Tensor` of the same
type as `initial_learning_rate`.
"""
def __init__(
self,
initial_learning_rate,
first_decay_steps,
t_mul=2.0,
m_mul=1.0,
alpha=0.0,
name=None,
):
"""Applies cosine decay with restarts to the learning rate.
Args:
initial_learning_rate: A scalar `float32` or `float64` Tensor or a
Python number. The initial learning rate.
first_decay_steps: A scalar `int32` or `int64` `Tensor` or a Python
number. Number of steps to decay over.
t_mul: A scalar `float32` or `float64` `Tensor` or a Python number.
Used to derive the number of iterations in the i-th period.
m_mul: A scalar `float32` or `float64` `Tensor` or a Python number.
Used to derive the initial learning rate of the i-th period.
alpha: A scalar `float32` or `float64` Tensor or a Python number.
Minimum learning rate value as a fraction of the
initial_learning_rate.
name: String. Optional name of the operation. Defaults to 'SGDRDecay'.
"""
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.first_decay_steps = first_decay_steps
self._t_mul = t_mul
self._m_mul = m_mul
self.alpha = alpha
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or "SGDRDecay") as name:
initial_learning_rate = tf.convert_to_tensor(
self.initial_learning_rate, name="initial_learning_rate"
)
dtype = initial_learning_rate.dtype
first_decay_steps = tf.cast(self.first_decay_steps, dtype)
alpha = tf.cast(self.alpha, dtype)
t_mul = tf.cast(self._t_mul, dtype)
m_mul = tf.cast(self._m_mul, dtype)
global_step_recomp = tf.cast(step, dtype)
completed_fraction = global_step_recomp / first_decay_steps
def compute_step(completed_fraction, geometric=False):
"""Helper for `cond` operation."""
if geometric:
i_restart = tf.floor(
tf.math.log(1.0 - completed_fraction * (1.0 - t_mul))
/ tf.math.log(t_mul)
)
sum_r = (1.0 - t_mul**i_restart) / (1.0 - t_mul)
completed_fraction = (
completed_fraction - sum_r
) / t_mul**i_restart
else:
i_restart = tf.floor(completed_fraction)
completed_fraction -= i_restart
return i_restart, completed_fraction
i_restart, completed_fraction = tf.cond(
tf.equal(t_mul, 1.0),
lambda: compute_step(completed_fraction, geometric=False),
lambda: compute_step(completed_fraction, geometric=True),
)
m_fac = m_mul**i_restart
cosine_decayed = (
0.5
* m_fac
* (
1.0
+ tf.cos(
tf.constant(math.pi, dtype=dtype) * completed_fraction
)
)
)
decayed = (1 - alpha) * cosine_decayed + alpha
return tf.multiply(initial_learning_rate, decayed, name=name)
def get_config(self):
return {
"initial_learning_rate": self.initial_learning_rate,
"first_decay_steps": self.first_decay_steps,
"t_mul": self._t_mul,
"m_mul": self._m_mul,
"alpha": self.alpha,
"name": self.name,
}
# Note: this code is still used by V1 APIs.
class LinearCosineDecay(LearningRateSchedule):
"""A LearningRateSchedule that uses a linear cosine decay schedule.
See [Bello et al., ICML2017] Neural Optimizer Search with RL.
https://arxiv.org/abs/1709.07417
For the idea of warm starts here controlled by `num_periods`,
see [Loshchilov & Hutter, ICLR2016] SGDR: Stochastic Gradient Descent
with Warm Restarts. https://arxiv.org/abs/1608.03983
Note that linear cosine decay is more aggressive than cosine decay and
larger initial learning rates can typically be used.
When training a model, it is often recommended to lower the learning rate as
the training progresses. This schedule applies a linear cosine decay
function to an optimizer step, given a provided initial learning rate.
It requires a `step` value to compute the decayed learning rate. You can
just pass a TensorFlow variable that you increment at each training step.
The schedule is a 1-arg callable that produces a decayed learning
rate when passed the current optimizer step. This can be useful for changing
the learning rate value across different invocations of optimizer functions.
It is computed as:
```python
def decayed_learning_rate(step):
step = min(step, decay_steps)
linear_decay = (decay_steps - step) / decay_steps
cosine_decay = 0.5 * (
1 + cos(pi * 2 * num_periods * step / decay_steps))
decayed = (alpha + linear_decay) * cosine_decay + beta
return initial_learning_rate * decayed
```
Example usage:
```python
decay_steps = 1000
lr_decayed_fn = (
tf.keras.experimental.LinearCosineDecay(
initial_learning_rate, decay_steps))
```
You can pass this schedule directly into a `tf.keras.optimizers.Optimizer`
as the learning rate. The learning rate schedule is also serializable and
deserializable using `tf.keras.optimizers.schedules.serialize` and
`tf.keras.optimizers.schedules.deserialize`.
Returns:
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar `Tensor` of the same
type as `initial_learning_rate`.
"""
def __init__(
self,
initial_learning_rate,
decay_steps,
num_periods=0.5,
alpha=0.0,
beta=0.001,
name=None,
):
"""Applies linear cosine decay to the learning rate.
Args:
initial_learning_rate: A scalar `float32` or `float64` Tensor or a
Python number. The initial learning rate.
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
Number of steps to decay over.
num_periods: Number of periods in the cosine part of the decay.
See computation above.
alpha: See computation above.
beta: See computation above.
name: String. Optional name of the operation. Defaults to
'LinearCosineDecay'.
"""
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.decay_steps = decay_steps
self.num_periods = num_periods
self.alpha = alpha
self.beta = beta
self.name = name
def __call__(self, step):
with tf.name_scope(self.name or "LinearCosineDecay") as name:
initial_learning_rate = tf.convert_to_tensor(
self.initial_learning_rate, name="initial_learning_rate"
)
dtype = initial_learning_rate.dtype
decay_steps = tf.cast(self.decay_steps, dtype)
num_periods = tf.cast(self.num_periods, dtype)
alpha = tf.cast(self.alpha, dtype)
beta = tf.cast(self.beta, dtype)
global_step_recomp = tf.cast(step, dtype)
global_step_recomp = tf.minimum(global_step_recomp, decay_steps)
linear_decayed = (decay_steps - global_step_recomp) / decay_steps
completed_fraction = global_step_recomp / decay_steps
fraction = 2.0 * num_periods * completed_fraction
cosine_decayed = 0.5 * (
1.0 + tf.cos(tf.constant(math.pi, dtype=dtype) * fraction)
)
linear_cosine_decayed = (
alpha + linear_decayed
) * cosine_decayed + beta
return tf.multiply(
initial_learning_rate, linear_cosine_decayed, name=name
)
def get_config(self):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_steps": self.decay_steps,
"num_periods": self.num_periods,
"alpha": self.alpha,
"beta": self.beta,
"name": self.name,
}
# Note: this code is still used by V1 APIs.
class NoisyLinearCosineDecay(LearningRateSchedule):
"""A LearningRateSchedule that uses a noisy linear cosine decay schedule.
See [Bello et al., ICML2017] Neural Optimizer Search with RL.
https://arxiv.org/abs/1709.07417
For the idea of warm starts here controlled by `num_periods`,
see [Loshchilov & Hutter, ICLR2016] SGDR: Stochastic Gradient Descent
with Warm Restarts. https://arxiv.org/abs/1608.03983
Note that linear cosine decay is more aggressive than cosine decay and
larger initial learning rates can typically be used.
When training a model, it is often recommended to lower the learning rate as
the training progresses. This schedule applies a noisy linear cosine decay
function to an optimizer step, given a provided initial learning rate.
It requires a `step` value to compute the decayed learning rate. You can
just pass a TensorFlow variable that you increment at each training step.
The schedule is a 1-arg callable that produces a decayed learning
rate when passed the current optimizer step. This can be useful for changing
the learning rate value across different invocations of optimizer functions.
It is computed as:
```python
def decayed_learning_rate(step):
step = min(step, decay_steps)
linear_decay = (decay_steps - step) / decay_steps)
cosine_decay = 0.5 * (
1 + cos(pi * 2 * num_periods * step / decay_steps))
decayed = (alpha + linear_decay + eps_t) * cosine_decay + beta
return initial_learning_rate * decayed
```
where eps_t is 0-centered gaussian noise with variance
initial_variance / (1 + global_step) ** variance_decay
Example usage:
```python
decay_steps = 1000
lr_decayed_fn = (
tf.keras.experimental.NoisyLinearCosineDecay(
initial_learning_rate, decay_steps))
```
You can pass this schedule directly into a `tf.keras.optimizers.Optimizer`
as the learning rate. The learning rate schedule is also serializable and
deserializable using `tf.keras.optimizers.schedules.serialize` and
`tf.keras.optimizers.schedules.deserialize`.
Returns:
A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar `Tensor` of the same
type as `initial_learning_rate`.
"""
def __init__(
self,
initial_learning_rate,
decay_steps,
initial_variance=1.0,
variance_decay=0.55,
num_periods=0.5,
alpha=0.0,
beta=0.001,
seed=None,
name=None,
):
"""Applies noisy linear cosine decay to the learning rate.
Args:
initial_learning_rate: A scalar `float32` or `float64` Tensor or a
Python number. The initial learning rate.
decay_steps: A scalar `int32` or `int64` `Tensor` or a Python number.
Number of steps to decay over.
initial_variance: initial variance for the noise. See computation
above.
variance_decay: decay for the noise's variance. See computation above.
num_periods: Number of periods in the cosine part of the decay.
See computation above.
alpha: See computation above.
beta: See computation above.
seed: Integer, optional random seed to enable deterministic behavior.
name: String. Optional name of the operation. Defaults to
'NoisyLinearCosineDecay'.
"""
super().__init__()
self.initial_learning_rate = initial_learning_rate
self.decay_steps = decay_steps
self.initial_variance = initial_variance
self.variance_decay = variance_decay
self.num_periods = num_periods
self.alpha = alpha
self.beta = beta
self.seed = seed
self.name = name
self._random_generator = backend.RandomGenerator(seed)
def __call__(self, step):
with tf.name_scope(self.name or "NoisyLinearCosineDecay") as name:
initial_learning_rate = tf.convert_to_tensor(
self.initial_learning_rate, name="initial_learning_rate"
)
dtype = initial_learning_rate.dtype
decay_steps = tf.cast(self.decay_steps, dtype)
initial_variance = tf.cast(self.initial_variance, dtype)
variance_decay = tf.cast(self.variance_decay, dtype)
num_periods = tf.cast(self.num_periods, dtype)
alpha = tf.cast(self.alpha, dtype)
beta = tf.cast(self.beta, dtype)
global_step_recomp = tf.cast(step, dtype)
global_step_recomp = tf.minimum(global_step_recomp, decay_steps)
linear_decayed = (decay_steps - global_step_recomp) / decay_steps
variance = initial_variance / (
tf.pow(1.0 + global_step_recomp, variance_decay)
)
std = tf.sqrt(variance)
noisy_linear_decayed = (
linear_decayed
+ self._random_generator.random_normal(
linear_decayed.shape, stddev=std
)
)
completed_fraction = global_step_recomp / decay_steps
fraction = 2.0 * num_periods * completed_fraction
cosine_decayed = 0.5 * (
1.0 + tf.cos(tf.constant(math.pi, dtype=dtype) * fraction)
)
noisy_linear_cosine_decayed = (
alpha + noisy_linear_decayed
) * cosine_decayed + beta
return tf.multiply(
initial_learning_rate, noisy_linear_cosine_decayed, name=name
)
def get_config(self):
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_steps": self.decay_steps,
"initial_variance": self.initial_variance,
"variance_decay": self.variance_decay,
"num_periods": self.num_periods,
"alpha": self.alpha,
"beta": self.beta,
"seed": self.seed,
"name": self.name,
}
@keras_export("keras.optimizers.schedules.serialize")
def serialize(learning_rate_schedule, use_legacy_format=False):
"""Serializes a `LearningRateSchedule` into a JSON-compatible dict.
Args:
learning_rate_schedule: The `LearningRateSchedule` object to serialize.
Returns:
A JSON-serializable dict representing the object's config.
Example:
>>> lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
... 0.1, decay_steps=100000, decay_rate=0.96, staircase=True)
>>> tf.keras.optimizers.schedules.serialize(lr_schedule)
{'class_name': 'ExponentialDecay', 'config': {...}}
"""
if use_legacy_format:
return legacy_serialization.serialize_keras_object(
learning_rate_schedule
)
# To be replaced by new serialization_lib
return legacy_serialization.serialize_keras_object(learning_rate_schedule)
@keras_export("keras.optimizers.schedules.deserialize")
def deserialize(config, custom_objects=None, use_legacy_format=False):
"""Instantiates a `LearningRateSchedule` object from a serialized form.
Args:
config: The serialized form of the `LearningRateSchedule`.
Dictionary of the form {'class_name': str, 'config': dict}.
custom_objects: A dictionary mapping class names (or function names) of
custom (non-Keras) objects to class/functions.
Returns:
A `LearningRateSchedule` object.
Example:
```python
# Configuration for PolynomialDecay
config = {
'class_name': 'PolynomialDecay',
'config': {'cycle': False,
'decay_steps': 10000,
'end_learning_rate': 0.01,
'initial_learning_rate': 0.1,
'name': None,
'power': 0.5}}
lr_schedule = tf.keras.optimizers.schedules.deserialize(config)
```
"""
if use_legacy_format:
return legacy_serialization.deserialize_keras_object(
config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name="decay",
)
# To be replaced by new serialization_lib
return legacy_serialization.deserialize_keras_object(
config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name="decay",
)