Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/utils/dataset_utils.py
2023-06-19 00:49:18 +02:00

748 lines
27 KiB
Python

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras image dataset loading utilities."""
import multiprocessing
import os
import random
import time
import warnings
import numpy as np
import tensorflow.compat.v2 as tf
from keras.utils import io_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.utils.split_dataset", v1=[])
def split_dataset(
dataset, left_size=None, right_size=None, shuffle=False, seed=None
):
"""Split a dataset into a left half and a right half (e.g. train / test).
Args:
dataset: A `tf.data.Dataset` object, or a list/tuple of arrays with the
same length.
left_size: If float (in the range `[0, 1]`), it signifies
the fraction of the data to pack in the left dataset. If integer, it
signifies the number of samples to pack in the left dataset. If
`None`, it defaults to the complement to `right_size`.
right_size: If float (in the range `[0, 1]`), it signifies
the fraction of the data to pack in the right dataset. If integer, it
signifies the number of samples to pack in the right dataset. If
`None`, it defaults to the complement to `left_size`.
shuffle: Boolean, whether to shuffle the data before splitting it.
seed: A random seed for shuffling.
Returns:
A tuple of two `tf.data.Dataset` objects: the left and right splits.
Example:
>>> data = np.random.random(size=(1000, 4))
>>> left_ds, right_ds = tf.keras.utils.split_dataset(data, left_size=0.8)
>>> int(left_ds.cardinality())
800
>>> int(right_ds.cardinality())
200
"""
dataset_type_spec = _get_type_spec(dataset)
if dataset_type_spec not in [tf.data.Dataset, list, tuple, np.ndarray]:
raise TypeError(
"The `dataset` argument must be either a `tf.data.Dataset` "
"object or a list/tuple of arrays. "
f"Received: dataset={dataset} of type {type(dataset)}"
)
if right_size is None and left_size is None:
raise ValueError(
"At least one of the `left_size` or `right_size` "
"must be specified. Received: left_size=None and "
"right_size=None"
)
dataset_as_list = _convert_dataset_to_list(dataset, dataset_type_spec)
if shuffle:
if seed is None:
seed = random.randint(0, int(1e6))
random.seed(seed)
random.shuffle(dataset_as_list)
total_length = len(dataset_as_list)
left_size, right_size = _rescale_dataset_split_sizes(
left_size, right_size, total_length
)
left_split = list(dataset_as_list[:left_size])
right_split = list(dataset_as_list[-right_size:])
left_split = _restore_dataset_from_list(
left_split, dataset_type_spec, dataset
)
right_split = _restore_dataset_from_list(
right_split, dataset_type_spec, dataset
)
left_split = tf.data.Dataset.from_tensor_slices(left_split)
right_split = tf.data.Dataset.from_tensor_slices(right_split)
# apply batching to the splits if the dataset is batched
if dataset_type_spec is tf.data.Dataset and is_batched(dataset):
batch_size = get_batch_size(dataset)
if batch_size is not None:
left_split = left_split.batch(batch_size)
right_split = right_split.batch(batch_size)
left_split = left_split.prefetch(tf.data.AUTOTUNE)
right_split = right_split.prefetch(tf.data.AUTOTUNE)
return left_split, right_split
def _convert_dataset_to_list(
dataset,
dataset_type_spec,
data_size_warning_flag=True,
ensure_shape_similarity=True,
):
"""Convert `tf.data.Dataset` object or list/tuple of NumPy arrays to a list.
Args:
dataset : A `tf.data.Dataset` object or a list/tuple of arrays.
dataset_type_spec : the type of the dataset
data_size_warning_flag (bool, optional): If set to True, a warning will
be issued if the dataset takes longer than 10 seconds to iterate.
Defaults to True.
ensure_shape_similarity (bool, optional): If set to True, the shape of
the first sample will be used to validate the shape of rest of the
samples. Defaults to True.
Returns:
List: A list of tuples/NumPy arrays.
"""
dataset_iterator = _get_data_iterator_from_dataset(
dataset, dataset_type_spec
)
dataset_as_list = []
start_time = time.time()
for sample in _get_next_sample(
dataset_iterator,
ensure_shape_similarity,
data_size_warning_flag,
start_time,
):
if dataset_type_spec in [tuple, list]:
# The try-except here is for NumPy 1.24 compatibility, see:
# https://numpy.org/neps/nep-0034-infer-dtype-is-object.html
try:
arr = np.array(sample)
except ValueError:
arr = np.array(sample, dtype=object)
dataset_as_list.append(arr)
else:
dataset_as_list.append(sample)
return dataset_as_list
def _get_data_iterator_from_dataset(dataset, dataset_type_spec):
"""Get the iterator from a dataset.
Args:
dataset : A `tf.data.Dataset` object or a list/tuple of arrays.
dataset_type_spec : the type of the dataset
Raises:
ValueError:
- If the dataset is empty.
- If the dataset is not a `tf.data.Dataset` object
or a list/tuple of arrays.
- If the dataset is a list/tuple of arrays and the
length of the list/tuple is not equal to the number
Returns:
iterator: An `iterator` object.
"""
if dataset_type_spec == list:
if len(dataset) == 0:
raise ValueError(
"Received an empty list dataset. "
"Please provide a non-empty list of arrays."
)
if _get_type_spec(dataset[0]) is np.ndarray:
expected_shape = dataset[0].shape
for i, element in enumerate(dataset):
if np.array(element).shape[0] != expected_shape[0]:
raise ValueError(
"Received a list of NumPy arrays with different "
f"lengths. Mismatch found at index {i}, "
f"Expected shape={expected_shape} "
f"Received shape={np.array(element).shape}."
"Please provide a list of NumPy arrays with "
"the same length."
)
else:
raise ValueError(
"Expected a list of `numpy.ndarray` objects,"
f"Received: {type(dataset[0])}"
)
return iter(zip(*dataset))
elif dataset_type_spec == tuple:
if len(dataset) == 0:
raise ValueError(
"Received an empty list dataset."
"Please provide a non-empty tuple of arrays."
)
if _get_type_spec(dataset[0]) is np.ndarray:
expected_shape = dataset[0].shape
for i, element in enumerate(dataset):
if np.array(element).shape[0] != expected_shape[0]:
raise ValueError(
"Received a tuple of NumPy arrays with different "
f"lengths. Mismatch found at index {i}, "
f"Expected shape={expected_shape} "
f"Received shape={np.array(element).shape}."
"Please provide a tuple of NumPy arrays with "
"the same length."
)
else:
raise ValueError(
"Expected a tuple of `numpy.ndarray` objects, "
f"Received: {type(dataset[0])}"
)
return iter(zip(*dataset))
elif dataset_type_spec == tf.data.Dataset:
if is_batched(dataset):
dataset = dataset.unbatch()
return iter(dataset)
elif dataset_type_spec == np.ndarray:
return iter(dataset)
def _get_next_sample(
dataset_iterator,
ensure_shape_similarity,
data_size_warning_flag,
start_time,
):
""" "Yield data samples from the `dataset_iterator`.
Args:
dataset_iterator : An `iterator` object.
ensure_shape_similarity (bool, optional): If set to True, the shape of
the first sample will be used to validate the shape of rest of the
samples. Defaults to True.
data_size_warning_flag (bool, optional): If set to True, a warning will
be issued if the dataset takes longer than 10 seconds to iterate.
Defaults to True.
start_time (float): the start time of the dataset iteration. this is
used only if `data_size_warning_flag` is set to true.
Raises:
ValueError: - If the dataset is empty.
- If `ensure_shape_similarity` is set to True and the
shape of the first sample is not equal to the shape of
atleast one of the rest of the samples.
Yields:
data_sample: A tuple/list of numpy arrays.
"""
try:
dataset_iterator = iter(dataset_iterator)
first_sample = next(dataset_iterator)
if isinstance(first_sample, (tf.Tensor, np.ndarray)):
first_sample_shape = np.array(first_sample).shape
else:
first_sample_shape = None
ensure_shape_similarity = False
yield first_sample
except StopIteration:
raise ValueError(
"Received an empty Dataset. `dataset` must "
"be a non-empty list/tuple of `numpy.ndarray` objects "
"or `tf.data.Dataset` objects."
)
for i, sample in enumerate(dataset_iterator):
if ensure_shape_similarity:
if first_sample_shape != np.array(sample).shape:
raise ValueError(
"All `dataset` samples must have same shape, "
f"Expected shape: {np.array(first_sample).shape} "
f"Received shape: {np.array(sample).shape} at index "
f"{i}."
)
if data_size_warning_flag:
if i % 10 == 0:
cur_time = time.time()
# warns user if the dataset is too large to iterate within 10s
if int(cur_time - start_time) > 10 and data_size_warning_flag:
warnings.warn(
"The dataset is taking longer than 10 seconds to "
"iterate over. This may be due to the size of the "
"dataset. Keep in mind that the `split_dataset` "
"utility is only for small in-memory dataset "
"(e.g. < 10,000 samples).",
category=ResourceWarning,
source="split_dataset",
)
data_size_warning_flag = False
yield sample
def _restore_dataset_from_list(
dataset_as_list, dataset_type_spec, original_dataset
):
"""Restore the dataset from the list of arrays."""
if dataset_type_spec in [tuple, list]:
return tuple(np.array(sample) for sample in zip(*dataset_as_list))
elif dataset_type_spec == tf.data.Dataset:
if isinstance(original_dataset.element_spec, dict):
restored_dataset = {}
for d in dataset_as_list:
for k, v in d.items():
if k not in restored_dataset:
restored_dataset[k] = [v]
else:
restored_dataset[k].append(v)
return restored_dataset
else:
return tuple(np.array(sample) for sample in zip(*dataset_as_list))
return dataset_as_list
def _rescale_dataset_split_sizes(left_size, right_size, total_length):
"""Rescale the dataset split sizes.
We want to ensure that the sum of
the split sizes is equal to the total length of the dataset.
Args:
left_size : The size of the left dataset split.
right_size : The size of the right dataset split.
total_length : The total length of the dataset.
Raises:
TypeError: - If `left_size` or `right_size` is not an integer or float.
ValueError: - If `left_size` or `right_size` is negative or greater
than 1 or greater than `total_length`.
Returns:
tuple: A tuple of rescaled left_size and right_size
"""
left_size_type = type(left_size)
right_size_type = type(right_size)
# check both left_size and right_size are integers or floats
if (left_size is not None and left_size_type not in [int, float]) and (
right_size is not None and right_size_type not in [int, float]
):
raise TypeError(
"Invalid `left_size` and `right_size` Types. Expected: "
"integer or float or None, Received: type(left_size)="
f"{left_size_type} and type(right_size)={right_size_type}"
)
# check left_size is a integer or float
if left_size is not None and left_size_type not in [int, float]:
raise TypeError(
"Invalid `left_size` Type. Expected: int or float or None, "
f"Received: type(left_size)={left_size_type}. "
)
# check right_size is a integer or float
if right_size is not None and right_size_type not in [int, float]:
raise TypeError(
"Invalid `right_size` Type. "
"Expected: int or float or None,"
f"Received: type(right_size)={right_size_type}."
)
# check left_size and right_size are non-zero
if left_size == 0 and right_size == 0:
raise ValueError(
"Both `left_size` and `right_size` are zero. "
"At least one of the split sizes must be non-zero."
)
# check left_size is non-negative and less than 1 and less than total_length
if (
left_size_type == int
and (left_size <= 0 or left_size >= total_length)
or left_size_type == float
and (left_size <= 0 or left_size >= 1)
):
raise ValueError(
"`left_size` should be either a positive integer "
f"smaller than {total_length}, or a float "
"within the range `[0, 1]`. Received: left_size="
f"{left_size}"
)
# check right_size is non-negative and less than 1 and less than
# total_length
if (
right_size_type == int
and (right_size <= 0 or right_size >= total_length)
or right_size_type == float
and (right_size <= 0 or right_size >= 1)
):
raise ValueError(
"`right_size` should be either a positive integer "
f"and smaller than {total_length} or a float "
"within the range `[0, 1]`. Received: right_size="
f"{right_size}"
)
# check sum of left_size and right_size is less than or equal to
# total_length
if (
right_size_type == left_size_type == float
and right_size + left_size > 1
):
raise ValueError(
"The sum of `left_size` and `right_size` is greater "
"than 1. It must be less than or equal to 1."
)
if left_size_type == float:
left_size = round(left_size * total_length)
elif left_size_type == int:
left_size = float(left_size)
if right_size_type == float:
right_size = round(right_size * total_length)
elif right_size_type == int:
right_size = float(right_size)
if left_size is None:
left_size = total_length - right_size
elif right_size is None:
right_size = total_length - left_size
if left_size + right_size > total_length:
raise ValueError(
"The sum of `left_size` and `right_size` should "
"be smaller than the {total_length}. "
f"Received: left_size + right_size = {left_size+right_size}"
f"and total_length = {total_length}"
)
for split, side in [(left_size, "left"), (right_size, "right")]:
if split == 0:
raise ValueError(
f"With `dataset` of length={total_length}, `left_size`="
f"{left_size} and `right_size`={right_size}."
f"Resulting {side} side dataset split will be empty. "
"Adjust any of the aforementioned parameters"
)
left_size, right_size = int(left_size), int(right_size)
return left_size, right_size
def _get_type_spec(dataset):
"""Get the type spec of the dataset."""
if isinstance(dataset, tuple):
return tuple
elif isinstance(dataset, list):
return list
elif isinstance(dataset, np.ndarray):
return np.ndarray
elif isinstance(dataset, dict):
return dict
elif isinstance(dataset, tf.data.Dataset):
return tf.data.Dataset
else:
return None
def is_batched(tf_dataset):
""" "Check if the `tf.data.Dataset` is batched."""
return hasattr(tf_dataset, "_batch_size")
def get_batch_size(tf_dataset):
"""Get the batch size of the dataset."""
if is_batched(tf_dataset):
return tf_dataset._batch_size
else:
return None
def index_directory(
directory,
labels,
formats,
class_names=None,
shuffle=True,
seed=None,
follow_links=False,
):
"""Make list of all files in `directory`, with their labels.
Args:
directory: Directory where the data is located.
If `labels` is "inferred", it should contain
subdirectories, each containing files for a class.
Otherwise, the directory structure is ignored.
labels: Either "inferred"
(labels are generated from the directory structure),
None (no labels),
or a list/tuple of integer labels of the same size as the number of
valid files found in the directory. Labels should be sorted according
to the alphanumeric order of the image file paths
(obtained via `os.walk(directory)` in Python).
formats: Allowlist of file extensions to index (e.g. ".jpg", ".txt").
class_names: Only valid if "labels" is "inferred". This is the explicit
list of class names (must match names of subdirectories). Used
to control the order of the classes
(otherwise alphanumerical order is used).
shuffle: Whether to shuffle the data. Default: True.
If set to False, sorts the data in alphanumeric order.
seed: Optional random seed for shuffling.
follow_links: Whether to visits subdirectories pointed to by symlinks.
Returns:
tuple (file_paths, labels, class_names).
file_paths: list of file paths (strings).
labels: list of matching integer labels (same length as file_paths)
class_names: names of the classes corresponding to these labels, in
order.
"""
if labels != "inferred":
# in the explicit/no-label cases, index from the parent directory down.
subdirs = [""]
class_names = subdirs
else:
subdirs = []
for subdir in sorted(tf.io.gfile.listdir(directory)):
if tf.io.gfile.isdir(tf.io.gfile.join(directory, subdir)):
if subdir.endswith("/"):
subdir = subdir[:-1]
subdirs.append(subdir)
if not class_names:
class_names = subdirs
else:
if set(class_names) != set(subdirs):
raise ValueError(
"The `class_names` passed did not match the "
"names of the subdirectories of the target directory. "
f"Expected: {subdirs}, but received: {class_names}"
)
class_indices = dict(zip(class_names, range(len(class_names))))
# Build an index of the files
# in the different class subfolders.
pool = multiprocessing.pool.ThreadPool()
results = []
filenames = []
for dirpath in (tf.io.gfile.join(directory, subdir) for subdir in subdirs):
results.append(
pool.apply_async(
index_subdirectory,
(dirpath, class_indices, follow_links, formats),
)
)
labels_list = []
for res in results:
partial_filenames, partial_labels = res.get()
labels_list.append(partial_labels)
filenames += partial_filenames
if labels not in ("inferred", None):
if len(labels) != len(filenames):
raise ValueError(
"Expected the lengths of `labels` to match the number "
"of files in the target directory. len(labels) is "
f"{len(labels)} while we found {len(filenames)} files "
f"in directory {directory}."
)
class_names = sorted(set(labels))
else:
i = 0
labels = np.zeros((len(filenames),), dtype="int32")
for partial_labels in labels_list:
labels[i : i + len(partial_labels)] = partial_labels
i += len(partial_labels)
if labels is None:
io_utils.print_msg(f"Found {len(filenames)} files.")
else:
io_utils.print_msg(
f"Found {len(filenames)} files belonging "
f"to {len(class_names)} classes."
)
pool.close()
pool.join()
file_paths = [tf.io.gfile.join(directory, fname) for fname in filenames]
if shuffle:
# Shuffle globally to erase macro-structure
if seed is None:
seed = np.random.randint(1e6)
rng = np.random.RandomState(seed)
rng.shuffle(file_paths)
rng = np.random.RandomState(seed)
rng.shuffle(labels)
return file_paths, labels, class_names
def iter_valid_files(directory, follow_links, formats):
if not follow_links:
walk = tf.io.gfile.walk(directory)
else:
walk = os.walk(directory, followlinks=follow_links)
for root, _, files in sorted(walk, key=lambda x: x[0]):
for fname in sorted(files):
if fname.lower().endswith(formats):
yield root, fname
def index_subdirectory(directory, class_indices, follow_links, formats):
"""Recursively walks directory and list image paths and their class index.
Args:
directory: string, target directory.
class_indices: dict mapping class names to their index.
follow_links: boolean, whether to recursively follow subdirectories
(if False, we only list top-level images in `directory`).
formats: Allowlist of file extensions to index (e.g. ".jpg", ".txt").
Returns:
tuple `(filenames, labels)`. `filenames` is a list of relative file
paths, and `labels` is a list of integer labels corresponding to these
files.
"""
dirname = os.path.basename(directory)
valid_files = iter_valid_files(directory, follow_links, formats)
labels = []
filenames = []
for root, fname in valid_files:
labels.append(class_indices[dirname])
absolute_path = tf.io.gfile.join(root, fname)
relative_path = tf.io.gfile.join(
dirname, os.path.relpath(absolute_path, directory)
)
filenames.append(relative_path)
return filenames, labels
def get_training_or_validation_split(samples, labels, validation_split, subset):
"""Potentially restict samples & labels to a training or validation split.
Args:
samples: List of elements.
labels: List of corresponding labels.
validation_split: Float, fraction of data to reserve for validation.
subset: Subset of the data to return.
Either "training", "validation", or None. If None, we return all of the
data.
Returns:
tuple (samples, labels), potentially restricted to the specified subset.
"""
if not validation_split:
return samples, labels
num_val_samples = int(validation_split * len(samples))
if subset == "training":
print(f"Using {len(samples) - num_val_samples} files for training.")
samples = samples[:-num_val_samples]
labels = labels[:-num_val_samples]
elif subset == "validation":
print(f"Using {num_val_samples} files for validation.")
samples = samples[-num_val_samples:]
labels = labels[-num_val_samples:]
else:
raise ValueError(
'`subset` must be either "training" '
f'or "validation", received: {subset}'
)
return samples, labels
def labels_to_dataset(labels, label_mode, num_classes):
"""Create a tf.data.Dataset from the list/tuple of labels.
Args:
labels: list/tuple of labels to be converted into a tf.data.Dataset.
label_mode: String describing the encoding of `labels`. Options are:
- 'binary' indicates that the labels (there can be only 2) are encoded as
`float32` scalars with values 0 or 1 (e.g. for `binary_crossentropy`).
- 'categorical' means that the labels are mapped into a categorical
vector. (e.g. for `categorical_crossentropy` loss).
num_classes: number of classes of labels.
Returns:
A `Dataset` instance.
"""
label_ds = tf.data.Dataset.from_tensor_slices(labels)
if label_mode == "binary":
label_ds = label_ds.map(
lambda x: tf.expand_dims(tf.cast(x, "float32"), axis=-1),
num_parallel_calls=tf.data.AUTOTUNE,
)
elif label_mode == "categorical":
label_ds = label_ds.map(
lambda x: tf.one_hot(x, num_classes),
num_parallel_calls=tf.data.AUTOTUNE,
)
return label_ds
def check_validation_split_arg(validation_split, subset, shuffle, seed):
"""Raise errors in case of invalid argument values.
Args:
validation_split: float between 0 and 1, fraction of data to reserve for
validation.
subset: One of "training", "validation" or "both". Only used if
`validation_split` is set.
shuffle: Whether to shuffle the data. Either True or False.
seed: random seed for shuffling and transformations.
"""
if validation_split and not 0 < validation_split < 1:
raise ValueError(
"`validation_split` must be between 0 and 1, "
f"received: {validation_split}"
)
if (validation_split or subset) and not (validation_split and subset):
raise ValueError(
"If `subset` is set, `validation_split` must be set, and inversely."
)
if subset not in ("training", "validation", "both", None):
raise ValueError(
'`subset` must be either "training", '
f'"validation" or "both", received: {subset}'
)
if validation_split and shuffle and seed is None:
raise ValueError(
"If using `validation_split` and shuffling the data, you must "
"provide a `seed` argument, to make sure that there is no "
"overlap between the training and validation subset."
)