Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/utils/generic_utils.py
2023-06-19 00:49:18 +02:00

558 lines
19 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python utilities required by Keras."""
import binascii
import codecs
import importlib
import marshal
import os
import re
import sys
import time
import types as python_types
import numpy as np
import tensorflow.compat.v2 as tf
from keras.utils import io_utils
from keras.utils import tf_inspect
# isort: off
from tensorflow.python.util.tf_export import keras_export
def func_dump(func):
"""Serializes a user defined function.
Args:
func: the function to serialize.
Returns:
A tuple `(code, defaults, closure)`.
"""
if os.name == "nt":
raw_code = marshal.dumps(func.__code__).replace(b"\\", b"/")
code = codecs.encode(raw_code, "base64").decode("ascii")
else:
raw_code = marshal.dumps(func.__code__)
code = codecs.encode(raw_code, "base64").decode("ascii")
defaults = func.__defaults__
if func.__closure__:
closure = tuple(c.cell_contents for c in func.__closure__)
else:
closure = None
return code, defaults, closure
def func_load(code, defaults=None, closure=None, globs=None):
"""Deserializes a user defined function.
Args:
code: bytecode of the function.
defaults: defaults of the function.
closure: closure of the function.
globs: dictionary of global objects.
Returns:
A function object.
"""
if isinstance(code, (tuple, list)): # unpack previous dump
code, defaults, closure = code
if isinstance(defaults, list):
defaults = tuple(defaults)
def ensure_value_to_cell(value):
"""Ensures that a value is converted to a python cell object.
Args:
value: Any value that needs to be casted to the cell type
Returns:
A value wrapped as a cell object (see function "func_load")
"""
def dummy_fn():
value # just access it so it gets captured in .__closure__
cell_value = dummy_fn.__closure__[0]
if not isinstance(value, type(cell_value)):
return cell_value
return value
if closure is not None:
closure = tuple(ensure_value_to_cell(_) for _ in closure)
try:
raw_code = codecs.decode(code.encode("ascii"), "base64")
except (UnicodeEncodeError, binascii.Error):
raw_code = code.encode("raw_unicode_escape")
code = marshal.loads(raw_code)
if globs is None:
globs = globals()
return python_types.FunctionType(
code, globs, name=code.co_name, argdefs=defaults, closure=closure
)
def has_arg(fn, name, accept_all=False):
"""Checks if a callable accepts a given keyword argument.
Args:
fn: Callable to inspect.
name: Check if `fn` can be called with `name` as a keyword argument.
accept_all: What to return if there is no parameter called `name` but
the function accepts a `**kwargs` argument.
Returns:
bool, whether `fn` accepts a `name` keyword argument.
"""
arg_spec = tf_inspect.getfullargspec(fn)
if accept_all and arg_spec.varkw is not None:
return True
return name in arg_spec.args or name in arg_spec.kwonlyargs
@keras_export("keras.utils.Progbar")
class Progbar:
"""Displays a progress bar.
Args:
target: Total number of steps expected, None if unknown.
width: Progress bar width on screen.
verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
stateful_metrics: Iterable of string names of metrics that should *not*
be averaged over time. Metrics in this list will be displayed as-is.
All others will be averaged by the progbar before display.
interval: Minimum visual progress update interval (in seconds).
unit_name: Display name for step counts (usually "step" or "sample").
"""
def __init__(
self,
target,
width=30,
verbose=1,
interval=0.05,
stateful_metrics=None,
unit_name="step",
):
self.target = target
self.width = width
self.verbose = verbose
self.interval = interval
self.unit_name = unit_name
if stateful_metrics:
self.stateful_metrics = set(stateful_metrics)
else:
self.stateful_metrics = set()
self._dynamic_display = (
(hasattr(sys.stdout, "isatty") and sys.stdout.isatty())
or "ipykernel" in sys.modules
or "posix" in sys.modules
or "PYCHARM_HOSTED" in os.environ
)
self._total_width = 0
self._seen_so_far = 0
# We use a dict + list to avoid garbage collection
# issues found in OrderedDict
self._values = {}
self._values_order = []
self._start = time.time()
self._last_update = 0
self._time_at_epoch_start = self._start
self._time_at_epoch_end = None
self._time_after_first_step = None
def update(self, current, values=None, finalize=None):
"""Updates the progress bar.
Args:
current: Index of current step.
values: List of tuples: `(name, value_for_last_step)`. If `name` is
in `stateful_metrics`, `value_for_last_step` will be displayed
as-is. Else, an average of the metric over time will be
displayed.
finalize: Whether this is the last update for the progress bar. If
`None`, defaults to `current >= self.target`.
"""
if finalize is None:
if self.target is None:
finalize = False
else:
finalize = current >= self.target
values = values or []
for k, v in values:
if k not in self._values_order:
self._values_order.append(k)
if k not in self.stateful_metrics:
# In the case that progress bar doesn't have a target value in
# the first epoch, both on_batch_end and on_epoch_end will be
# called, which will cause 'current' and 'self._seen_so_far' to
# have the same value. Force the minimal value to 1 here,
# otherwise stateful_metric will be 0s.
value_base = max(current - self._seen_so_far, 1)
if k not in self._values:
self._values[k] = [v * value_base, value_base]
else:
self._values[k][0] += v * value_base
self._values[k][1] += value_base
else:
# Stateful metrics output a numeric value. This representation
# means "take an average from a single value" but keeps the
# numeric formatting.
self._values[k] = [v, 1]
self._seen_so_far = current
message = ""
now = time.time()
info = f" - {now - self._start:.0f}s"
if current == self.target:
self._time_at_epoch_end = now
if self.verbose == 1:
if now - self._last_update < self.interval and not finalize:
return
prev_total_width = self._total_width
if self._dynamic_display:
message += "\b" * prev_total_width
message += "\r"
else:
message += "\n"
if self.target is not None:
numdigits = int(np.log10(self.target)) + 1
bar = ("%" + str(numdigits) + "d/%d [") % (current, self.target)
prog = float(current) / self.target
prog_width = int(self.width * prog)
if prog_width > 0:
bar += "=" * (prog_width - 1)
if current < self.target:
bar += ">"
else:
bar += "="
bar += "." * (self.width - prog_width)
bar += "]"
else:
bar = "%7d/Unknown" % current
self._total_width = len(bar)
message += bar
time_per_unit = self._estimate_step_duration(current, now)
if self.target is None or finalize:
info += self._format_time(time_per_unit, self.unit_name)
else:
eta = time_per_unit * (self.target - current)
if eta > 3600:
eta_format = "%d:%02d:%02d" % (
eta // 3600,
(eta % 3600) // 60,
eta % 60,
)
elif eta > 60:
eta_format = "%d:%02d" % (eta // 60, eta % 60)
else:
eta_format = "%ds" % eta
info = f" - ETA: {eta_format}"
for k in self._values_order:
info += f" - {k}:"
if isinstance(self._values[k], list):
avg = np.mean(
self._values[k][0] / max(1, self._values[k][1])
)
if abs(avg) > 1e-3:
info += f" {avg:.4f}"
else:
info += f" {avg:.4e}"
else:
info += f" {self._values[k]}"
self._total_width += len(info)
if prev_total_width > self._total_width:
info += " " * (prev_total_width - self._total_width)
if finalize:
info += "\n"
message += info
io_utils.print_msg(message, line_break=False)
message = ""
elif self.verbose == 2:
if finalize:
numdigits = int(np.log10(self.target)) + 1
count = ("%" + str(numdigits) + "d/%d") % (current, self.target)
info = count + info
for k in self._values_order:
info += f" - {k}:"
avg = np.mean(
self._values[k][0] / max(1, self._values[k][1])
)
if avg > 1e-3:
info += f" {avg:.4f}"
else:
info += f" {avg:.4e}"
if self._time_at_epoch_end:
time_per_epoch = (
self._time_at_epoch_end - self._time_at_epoch_start
)
avg_time_per_step = time_per_epoch / self.target
self._time_at_epoch_start = now
self._time_at_epoch_end = None
info += " -" + self._format_time(time_per_epoch, "epoch")
info += " -" + self._format_time(
avg_time_per_step, self.unit_name
)
info += "\n"
message += info
io_utils.print_msg(message, line_break=False)
message = ""
self._last_update = now
def add(self, n, values=None):
self.update(self._seen_so_far + n, values)
def _format_time(self, time_per_unit, unit_name):
"""format a given duration to display to the user.
Given the duration, this function formats it in either milliseconds
or seconds and displays the unit (i.e. ms/step or s/epoch)
Args:
time_per_unit: the duration to display
unit_name: the name of the unit to display
Returns:
a string with the correctly formatted duration and units
"""
formatted = ""
if time_per_unit >= 1 or time_per_unit == 0:
formatted += f" {time_per_unit:.0f}s/{unit_name}"
elif time_per_unit >= 1e-3:
formatted += f" {time_per_unit * 1000.0:.0f}ms/{unit_name}"
else:
formatted += f" {time_per_unit * 1000000.0:.0f}us/{unit_name}"
return formatted
def _estimate_step_duration(self, current, now):
"""Estimate the duration of a single step.
Given the step number `current` and the corresponding time `now` this
function returns an estimate for how long a single step takes. If this
is called before one step has been completed (i.e. `current == 0`) then
zero is given as an estimate. The duration estimate ignores the duration
of the (assumed to be non-representative) first step for estimates when
more steps are available (i.e. `current>1`).
Args:
current: Index of current step.
now: The current time.
Returns: Estimate of the duration of a single step.
"""
if current:
# there are a few special scenarios here:
# 1) somebody is calling the progress bar without ever supplying
# step 1
# 2) somebody is calling the progress bar and supplies step one
# multiple times, e.g. as part of a finalizing call
# in these cases, we just fall back to the simple calculation
if self._time_after_first_step is not None and current > 1:
time_per_unit = (now - self._time_after_first_step) / (
current - 1
)
else:
time_per_unit = (now - self._start) / current
if current == 1:
self._time_after_first_step = now
return time_per_unit
else:
return 0
def _update_stateful_metrics(self, stateful_metrics):
self.stateful_metrics = self.stateful_metrics.union(stateful_metrics)
def make_batches(size, batch_size):
"""Returns a list of batch indices (tuples of indices).
Args:
size: Integer, total size of the data to slice into batches.
batch_size: Integer, batch size.
Returns:
A list of tuples of array indices.
"""
num_batches = int(np.ceil(size / float(batch_size)))
return [
(i * batch_size, min(size, (i + 1) * batch_size))
for i in range(0, num_batches)
]
def slice_arrays(arrays, start=None, stop=None):
"""Slice an array or list of arrays.
This takes an array-like, or a list of
array-likes, and outputs:
- arrays[start:stop] if `arrays` is an array-like
- [x[start:stop] for x in arrays] if `arrays` is a list
Can also work on list/array of indices: `slice_arrays(x, indices)`
Args:
arrays: Single array or list of arrays.
start: can be an integer index (start index) or a list/array of indices
stop: integer (stop index); should be None if `start` was a list.
Returns:
A slice of the array(s).
Raises:
ValueError: If the value of start is a list and stop is not None.
"""
if arrays is None:
return [None]
if isinstance(start, list) and stop is not None:
raise ValueError(
"The stop argument has to be None if the value of start "
f"is a list. Received start={start}, stop={stop}"
)
elif isinstance(arrays, list):
if hasattr(start, "__len__"):
# hdf5 datasets only support list objects as indices
if hasattr(start, "shape"):
start = start.tolist()
return [None if x is None else x[start] for x in arrays]
return [
None
if x is None
else None
if not hasattr(x, "__getitem__")
else x[start:stop]
for x in arrays
]
else:
if hasattr(start, "__len__"):
if hasattr(start, "shape"):
start = start.tolist()
return arrays[start]
if hasattr(start, "__getitem__"):
return arrays[start:stop]
return [None]
def to_list(x):
"""Normalizes a list/tensor into a list.
If a tensor is passed, we return
a list of size 1 containing the tensor.
Args:
x: target object to be normalized.
Returns:
A list.
"""
if isinstance(x, list):
return x
return [x]
def to_snake_case(name):
intermediate = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name)
insecure = re.sub("([a-z])([A-Z])", r"\1_\2", intermediate).lower()
# If the class is private the name starts with "_" which is not secure
# for creating scopes. We prefix the name with "private" in this case.
if insecure[0] != "_":
return insecure
return "private" + insecure
def is_all_none(structure):
iterable = tf.nest.flatten(structure)
# We cannot use Python's `any` because the iterable may return Tensors.
for element in iterable:
if element is not None:
return False
return True
def check_for_unexpected_keys(name, input_dict, expected_values):
unknown = set(input_dict.keys()).difference(expected_values)
if unknown:
raise ValueError(
f"Unknown entries in {name} dictionary: {list(unknown)}. "
f"Only expected following keys: {expected_values}"
)
def validate_kwargs(
kwargs, allowed_kwargs, error_message="Keyword argument not understood:"
):
"""Checks that all keyword arguments are in the set of allowed keys."""
for kwarg in kwargs:
if kwarg not in allowed_kwargs:
raise TypeError(error_message, kwarg)
def default(method):
"""Decorates a method to detect overrides in subclasses."""
method._is_default = True
return method
def is_default(method):
"""Check if a method is decorated with the `default` wrapper."""
return getattr(method, "_is_default", False)
def populate_dict_with_module_objects(target_dict, modules, obj_filter):
for module in modules:
for name in dir(module):
obj = getattr(module, name)
if obj_filter(obj):
target_dict[name] = obj
class LazyLoader(python_types.ModuleType):
"""Lazily import a module, mainly to avoid pulling in large dependencies."""
def __init__(self, local_name, parent_module_globals, name):
self._local_name = local_name
self._parent_module_globals = parent_module_globals
super().__init__(name)
def _load(self):
"""Load the module and insert it into the parent's globals."""
# Import the target module and insert it into the parent's namespace
module = importlib.import_module(self.__name__)
self._parent_module_globals[self._local_name] = module
# Update this object's dict so that if someone keeps a reference to the
# LazyLoader, lookups are efficient (__getattr__ is only called on
# lookups that fail).
self.__dict__.update(module.__dict__)
return module
def __getattr__(self, item):
module = self._load()
return getattr(module, item)