2738 lines
104 KiB
Python
2738 lines
104 KiB
Python
import sys
|
|
import gc
|
|
import gzip
|
|
import os
|
|
import threading
|
|
import time
|
|
import warnings
|
|
import io
|
|
import re
|
|
import pytest
|
|
from pathlib import Path
|
|
from tempfile import NamedTemporaryFile
|
|
from io import BytesIO, StringIO
|
|
from datetime import datetime
|
|
import locale
|
|
from multiprocessing import Value, get_context
|
|
from ctypes import c_bool
|
|
|
|
import numpy as np
|
|
import numpy.ma as ma
|
|
from numpy.lib._iotools import ConverterError, ConversionWarning
|
|
from numpy.compat import asbytes
|
|
from numpy.ma.testutils import assert_equal
|
|
from numpy.testing import (
|
|
assert_warns, assert_, assert_raises_regex, assert_raises,
|
|
assert_allclose, assert_array_equal, temppath, tempdir, IS_PYPY,
|
|
HAS_REFCOUNT, suppress_warnings, assert_no_gc_cycles, assert_no_warnings,
|
|
break_cycles
|
|
)
|
|
from numpy.testing._private.utils import requires_memory
|
|
|
|
|
|
class TextIO(BytesIO):
|
|
"""Helper IO class.
|
|
|
|
Writes encode strings to bytes if needed, reads return bytes.
|
|
This makes it easier to emulate files opened in binary mode
|
|
without needing to explicitly convert strings to bytes in
|
|
setting up the test data.
|
|
|
|
"""
|
|
def __init__(self, s=""):
|
|
BytesIO.__init__(self, asbytes(s))
|
|
|
|
def write(self, s):
|
|
BytesIO.write(self, asbytes(s))
|
|
|
|
def writelines(self, lines):
|
|
BytesIO.writelines(self, [asbytes(s) for s in lines])
|
|
|
|
|
|
IS_64BIT = sys.maxsize > 2**32
|
|
try:
|
|
import bz2
|
|
HAS_BZ2 = True
|
|
except ImportError:
|
|
HAS_BZ2 = False
|
|
try:
|
|
import lzma
|
|
HAS_LZMA = True
|
|
except ImportError:
|
|
HAS_LZMA = False
|
|
|
|
|
|
def strptime(s, fmt=None):
|
|
"""
|
|
This function is available in the datetime module only from Python >=
|
|
2.5.
|
|
|
|
"""
|
|
if type(s) == bytes:
|
|
s = s.decode("latin1")
|
|
return datetime(*time.strptime(s, fmt)[:3])
|
|
|
|
|
|
class RoundtripTest:
|
|
def roundtrip(self, save_func, *args, **kwargs):
|
|
"""
|
|
save_func : callable
|
|
Function used to save arrays to file.
|
|
file_on_disk : bool
|
|
If true, store the file on disk, instead of in a
|
|
string buffer.
|
|
save_kwds : dict
|
|
Parameters passed to `save_func`.
|
|
load_kwds : dict
|
|
Parameters passed to `numpy.load`.
|
|
args : tuple of arrays
|
|
Arrays stored to file.
|
|
|
|
"""
|
|
save_kwds = kwargs.get('save_kwds', {})
|
|
load_kwds = kwargs.get('load_kwds', {"allow_pickle": True})
|
|
file_on_disk = kwargs.get('file_on_disk', False)
|
|
|
|
if file_on_disk:
|
|
target_file = NamedTemporaryFile(delete=False)
|
|
load_file = target_file.name
|
|
else:
|
|
target_file = BytesIO()
|
|
load_file = target_file
|
|
|
|
try:
|
|
arr = args
|
|
|
|
save_func(target_file, *arr, **save_kwds)
|
|
target_file.flush()
|
|
target_file.seek(0)
|
|
|
|
if sys.platform == 'win32' and not isinstance(target_file, BytesIO):
|
|
target_file.close()
|
|
|
|
arr_reloaded = np.load(load_file, **load_kwds)
|
|
|
|
self.arr = arr
|
|
self.arr_reloaded = arr_reloaded
|
|
finally:
|
|
if not isinstance(target_file, BytesIO):
|
|
target_file.close()
|
|
# holds an open file descriptor so it can't be deleted on win
|
|
if 'arr_reloaded' in locals():
|
|
if not isinstance(arr_reloaded, np.lib.npyio.NpzFile):
|
|
os.remove(target_file.name)
|
|
|
|
def check_roundtrips(self, a):
|
|
self.roundtrip(a)
|
|
self.roundtrip(a, file_on_disk=True)
|
|
self.roundtrip(np.asfortranarray(a))
|
|
self.roundtrip(np.asfortranarray(a), file_on_disk=True)
|
|
if a.shape[0] > 1:
|
|
# neither C nor Fortran contiguous for 2D arrays or more
|
|
self.roundtrip(np.asfortranarray(a)[1:])
|
|
self.roundtrip(np.asfortranarray(a)[1:], file_on_disk=True)
|
|
|
|
def test_array(self):
|
|
a = np.array([], float)
|
|
self.check_roundtrips(a)
|
|
|
|
a = np.array([[1, 2], [3, 4]], float)
|
|
self.check_roundtrips(a)
|
|
|
|
a = np.array([[1, 2], [3, 4]], int)
|
|
self.check_roundtrips(a)
|
|
|
|
a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.csingle)
|
|
self.check_roundtrips(a)
|
|
|
|
a = np.array([[1 + 5j, 2 + 6j], [3 + 7j, 4 + 8j]], dtype=np.cdouble)
|
|
self.check_roundtrips(a)
|
|
|
|
def test_array_object(self):
|
|
a = np.array([], object)
|
|
self.check_roundtrips(a)
|
|
|
|
a = np.array([[1, 2], [3, 4]], object)
|
|
self.check_roundtrips(a)
|
|
|
|
def test_1D(self):
|
|
a = np.array([1, 2, 3, 4], int)
|
|
self.roundtrip(a)
|
|
|
|
@pytest.mark.skipif(sys.platform == 'win32', reason="Fails on Win32")
|
|
def test_mmap(self):
|
|
a = np.array([[1, 2.5], [4, 7.3]])
|
|
self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'})
|
|
|
|
a = np.asfortranarray([[1, 2.5], [4, 7.3]])
|
|
self.roundtrip(a, file_on_disk=True, load_kwds={'mmap_mode': 'r'})
|
|
|
|
def test_record(self):
|
|
a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
|
|
self.check_roundtrips(a)
|
|
|
|
@pytest.mark.slow
|
|
def test_format_2_0(self):
|
|
dt = [(("%d" % i) * 100, float) for i in range(500)]
|
|
a = np.ones(1000, dtype=dt)
|
|
with warnings.catch_warnings(record=True):
|
|
warnings.filterwarnings('always', '', UserWarning)
|
|
self.check_roundtrips(a)
|
|
|
|
|
|
class TestSaveLoad(RoundtripTest):
|
|
def roundtrip(self, *args, **kwargs):
|
|
RoundtripTest.roundtrip(self, np.save, *args, **kwargs)
|
|
assert_equal(self.arr[0], self.arr_reloaded)
|
|
assert_equal(self.arr[0].dtype, self.arr_reloaded.dtype)
|
|
assert_equal(self.arr[0].flags.fnc, self.arr_reloaded.flags.fnc)
|
|
|
|
|
|
class TestSavezLoad(RoundtripTest):
|
|
def roundtrip(self, *args, **kwargs):
|
|
RoundtripTest.roundtrip(self, np.savez, *args, **kwargs)
|
|
try:
|
|
for n, arr in enumerate(self.arr):
|
|
reloaded = self.arr_reloaded['arr_%d' % n]
|
|
assert_equal(arr, reloaded)
|
|
assert_equal(arr.dtype, reloaded.dtype)
|
|
assert_equal(arr.flags.fnc, reloaded.flags.fnc)
|
|
finally:
|
|
# delete tempfile, must be done here on windows
|
|
if self.arr_reloaded.fid:
|
|
self.arr_reloaded.fid.close()
|
|
os.remove(self.arr_reloaded.fid.name)
|
|
|
|
@pytest.mark.skipif(IS_PYPY, reason="Hangs on PyPy")
|
|
@pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform")
|
|
@pytest.mark.slow
|
|
def test_big_arrays(self):
|
|
L = (1 << 31) + 100000
|
|
a = np.empty(L, dtype=np.uint8)
|
|
with temppath(prefix="numpy_test_big_arrays_", suffix=".npz") as tmp:
|
|
np.savez(tmp, a=a)
|
|
del a
|
|
npfile = np.load(tmp)
|
|
a = npfile['a'] # Should succeed
|
|
npfile.close()
|
|
del a # Avoid pyflakes unused variable warning.
|
|
|
|
def test_multiple_arrays(self):
|
|
a = np.array([[1, 2], [3, 4]], float)
|
|
b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex)
|
|
self.roundtrip(a, b)
|
|
|
|
def test_named_arrays(self):
|
|
a = np.array([[1, 2], [3, 4]], float)
|
|
b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex)
|
|
c = BytesIO()
|
|
np.savez(c, file_a=a, file_b=b)
|
|
c.seek(0)
|
|
l = np.load(c)
|
|
assert_equal(a, l['file_a'])
|
|
assert_equal(b, l['file_b'])
|
|
|
|
def test_BagObj(self):
|
|
a = np.array([[1, 2], [3, 4]], float)
|
|
b = np.array([[1 + 2j, 2 + 7j], [3 - 6j, 4 + 12j]], complex)
|
|
c = BytesIO()
|
|
np.savez(c, file_a=a, file_b=b)
|
|
c.seek(0)
|
|
l = np.load(c)
|
|
assert_equal(sorted(dir(l.f)), ['file_a','file_b'])
|
|
assert_equal(a, l.f.file_a)
|
|
assert_equal(b, l.f.file_b)
|
|
|
|
def test_savez_filename_clashes(self):
|
|
# Test that issue #852 is fixed
|
|
# and savez functions in multithreaded environment
|
|
|
|
def writer(error_list):
|
|
with temppath(suffix='.npz') as tmp:
|
|
arr = np.random.randn(500, 500)
|
|
try:
|
|
np.savez(tmp, arr=arr)
|
|
except OSError as err:
|
|
error_list.append(err)
|
|
|
|
errors = []
|
|
threads = [threading.Thread(target=writer, args=(errors,))
|
|
for j in range(3)]
|
|
for t in threads:
|
|
t.start()
|
|
for t in threads:
|
|
t.join()
|
|
|
|
if errors:
|
|
raise AssertionError(errors)
|
|
|
|
def test_not_closing_opened_fid(self):
|
|
# Test that issue #2178 is fixed:
|
|
# verify could seek on 'loaded' file
|
|
with temppath(suffix='.npz') as tmp:
|
|
with open(tmp, 'wb') as fp:
|
|
np.savez(fp, data='LOVELY LOAD')
|
|
with open(tmp, 'rb', 10000) as fp:
|
|
fp.seek(0)
|
|
assert_(not fp.closed)
|
|
np.load(fp)['data']
|
|
# fp must not get closed by .load
|
|
assert_(not fp.closed)
|
|
fp.seek(0)
|
|
assert_(not fp.closed)
|
|
|
|
@pytest.mark.slow_pypy
|
|
def test_closing_fid(self):
|
|
# Test that issue #1517 (too many opened files) remains closed
|
|
# It might be a "weak" test since failed to get triggered on
|
|
# e.g. Debian sid of 2012 Jul 05 but was reported to
|
|
# trigger the failure on Ubuntu 10.04:
|
|
# http://projects.scipy.org/numpy/ticket/1517#comment:2
|
|
with temppath(suffix='.npz') as tmp:
|
|
np.savez(tmp, data='LOVELY LOAD')
|
|
# We need to check if the garbage collector can properly close
|
|
# numpy npz file returned by np.load when their reference count
|
|
# goes to zero. Python 3 running in debug mode raises a
|
|
# ResourceWarning when file closing is left to the garbage
|
|
# collector, so we catch the warnings.
|
|
with suppress_warnings() as sup:
|
|
sup.filter(ResourceWarning) # TODO: specify exact message
|
|
for i in range(1, 1025):
|
|
try:
|
|
np.load(tmp)["data"]
|
|
except Exception as e:
|
|
msg = "Failed to load data from a file: %s" % e
|
|
raise AssertionError(msg)
|
|
finally:
|
|
if IS_PYPY:
|
|
gc.collect()
|
|
|
|
def test_closing_zipfile_after_load(self):
|
|
# Check that zipfile owns file and can close it. This needs to
|
|
# pass a file name to load for the test. On windows failure will
|
|
# cause a second error will be raised when the attempt to remove
|
|
# the open file is made.
|
|
prefix = 'numpy_test_closing_zipfile_after_load_'
|
|
with temppath(suffix='.npz', prefix=prefix) as tmp:
|
|
np.savez(tmp, lab='place holder')
|
|
data = np.load(tmp)
|
|
fp = data.zip.fp
|
|
data.close()
|
|
assert_(fp.closed)
|
|
|
|
|
|
class TestSaveTxt:
|
|
def test_array(self):
|
|
a = np.array([[1, 2], [3, 4]], float)
|
|
fmt = "%.18e"
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt=fmt)
|
|
c.seek(0)
|
|
assert_equal(c.readlines(),
|
|
[asbytes((fmt + ' ' + fmt + '\n') % (1, 2)),
|
|
asbytes((fmt + ' ' + fmt + '\n') % (3, 4))])
|
|
|
|
a = np.array([[1, 2], [3, 4]], int)
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt='%d')
|
|
c.seek(0)
|
|
assert_equal(c.readlines(), [b'1 2\n', b'3 4\n'])
|
|
|
|
def test_1D(self):
|
|
a = np.array([1, 2, 3, 4], int)
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt='%d')
|
|
c.seek(0)
|
|
lines = c.readlines()
|
|
assert_equal(lines, [b'1\n', b'2\n', b'3\n', b'4\n'])
|
|
|
|
def test_0D_3D(self):
|
|
c = BytesIO()
|
|
assert_raises(ValueError, np.savetxt, c, np.array(1))
|
|
assert_raises(ValueError, np.savetxt, c, np.array([[[1], [2]]]))
|
|
|
|
def test_structured(self):
|
|
a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt='%d')
|
|
c.seek(0)
|
|
assert_equal(c.readlines(), [b'1 2\n', b'3 4\n'])
|
|
|
|
def test_structured_padded(self):
|
|
# gh-13297
|
|
a = np.array([(1, 2, 3),(4, 5, 6)], dtype=[
|
|
('foo', 'i4'), ('bar', 'i4'), ('baz', 'i4')
|
|
])
|
|
c = BytesIO()
|
|
np.savetxt(c, a[['foo', 'baz']], fmt='%d')
|
|
c.seek(0)
|
|
assert_equal(c.readlines(), [b'1 3\n', b'4 6\n'])
|
|
|
|
def test_multifield_view(self):
|
|
a = np.ones(1, dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'f4')])
|
|
v = a[['x', 'z']]
|
|
with temppath(suffix='.npy') as path:
|
|
path = Path(path)
|
|
np.save(path, v)
|
|
data = np.load(path)
|
|
assert_array_equal(data, v)
|
|
|
|
def test_delimiter(self):
|
|
a = np.array([[1., 2.], [3., 4.]])
|
|
c = BytesIO()
|
|
np.savetxt(c, a, delimiter=',', fmt='%d')
|
|
c.seek(0)
|
|
assert_equal(c.readlines(), [b'1,2\n', b'3,4\n'])
|
|
|
|
def test_format(self):
|
|
a = np.array([(1, 2), (3, 4)])
|
|
c = BytesIO()
|
|
# Sequence of formats
|
|
np.savetxt(c, a, fmt=['%02d', '%3.1f'])
|
|
c.seek(0)
|
|
assert_equal(c.readlines(), [b'01 2.0\n', b'03 4.0\n'])
|
|
|
|
# A single multiformat string
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt='%02d : %3.1f')
|
|
c.seek(0)
|
|
lines = c.readlines()
|
|
assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n'])
|
|
|
|
# Specify delimiter, should be overridden
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt='%02d : %3.1f', delimiter=',')
|
|
c.seek(0)
|
|
lines = c.readlines()
|
|
assert_equal(lines, [b'01 : 2.0\n', b'03 : 4.0\n'])
|
|
|
|
# Bad fmt, should raise a ValueError
|
|
c = BytesIO()
|
|
assert_raises(ValueError, np.savetxt, c, a, fmt=99)
|
|
|
|
def test_header_footer(self):
|
|
# Test the functionality of the header and footer keyword argument.
|
|
|
|
c = BytesIO()
|
|
a = np.array([(1, 2), (3, 4)], dtype=int)
|
|
test_header_footer = 'Test header / footer'
|
|
# Test the header keyword argument
|
|
np.savetxt(c, a, fmt='%1d', header=test_header_footer)
|
|
c.seek(0)
|
|
assert_equal(c.read(),
|
|
asbytes('# ' + test_header_footer + '\n1 2\n3 4\n'))
|
|
# Test the footer keyword argument
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt='%1d', footer=test_header_footer)
|
|
c.seek(0)
|
|
assert_equal(c.read(),
|
|
asbytes('1 2\n3 4\n# ' + test_header_footer + '\n'))
|
|
# Test the commentstr keyword argument used on the header
|
|
c = BytesIO()
|
|
commentstr = '% '
|
|
np.savetxt(c, a, fmt='%1d',
|
|
header=test_header_footer, comments=commentstr)
|
|
c.seek(0)
|
|
assert_equal(c.read(),
|
|
asbytes(commentstr + test_header_footer + '\n' + '1 2\n3 4\n'))
|
|
# Test the commentstr keyword argument used on the footer
|
|
c = BytesIO()
|
|
commentstr = '% '
|
|
np.savetxt(c, a, fmt='%1d',
|
|
footer=test_header_footer, comments=commentstr)
|
|
c.seek(0)
|
|
assert_equal(c.read(),
|
|
asbytes('1 2\n3 4\n' + commentstr + test_header_footer + '\n'))
|
|
|
|
def test_file_roundtrip(self):
|
|
with temppath() as name:
|
|
a = np.array([(1, 2), (3, 4)])
|
|
np.savetxt(name, a)
|
|
b = np.loadtxt(name)
|
|
assert_array_equal(a, b)
|
|
|
|
def test_complex_arrays(self):
|
|
ncols = 2
|
|
nrows = 2
|
|
a = np.zeros((ncols, nrows), dtype=np.complex128)
|
|
re = np.pi
|
|
im = np.e
|
|
a[:] = re + 1.0j * im
|
|
|
|
# One format only
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt=' %+.3e')
|
|
c.seek(0)
|
|
lines = c.readlines()
|
|
assert_equal(
|
|
lines,
|
|
[b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n',
|
|
b' ( +3.142e+00+ +2.718e+00j) ( +3.142e+00+ +2.718e+00j)\n'])
|
|
|
|
# One format for each real and imaginary part
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt=' %+.3e' * 2 * ncols)
|
|
c.seek(0)
|
|
lines = c.readlines()
|
|
assert_equal(
|
|
lines,
|
|
[b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n',
|
|
b' +3.142e+00 +2.718e+00 +3.142e+00 +2.718e+00\n'])
|
|
|
|
# One format for each complex number
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt=['(%.3e%+.3ej)'] * ncols)
|
|
c.seek(0)
|
|
lines = c.readlines()
|
|
assert_equal(
|
|
lines,
|
|
[b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n',
|
|
b'(3.142e+00+2.718e+00j) (3.142e+00+2.718e+00j)\n'])
|
|
|
|
def test_complex_negative_exponent(self):
|
|
# Previous to 1.15, some formats generated x+-yj, gh 7895
|
|
ncols = 2
|
|
nrows = 2
|
|
a = np.zeros((ncols, nrows), dtype=np.complex128)
|
|
re = np.pi
|
|
im = np.e
|
|
a[:] = re - 1.0j * im
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt='%.3e')
|
|
c.seek(0)
|
|
lines = c.readlines()
|
|
assert_equal(
|
|
lines,
|
|
[b' (3.142e+00-2.718e+00j) (3.142e+00-2.718e+00j)\n',
|
|
b' (3.142e+00-2.718e+00j) (3.142e+00-2.718e+00j)\n'])
|
|
|
|
|
|
def test_custom_writer(self):
|
|
|
|
class CustomWriter(list):
|
|
def write(self, text):
|
|
self.extend(text.split(b'\n'))
|
|
|
|
w = CustomWriter()
|
|
a = np.array([(1, 2), (3, 4)])
|
|
np.savetxt(w, a)
|
|
b = np.loadtxt(w)
|
|
assert_array_equal(a, b)
|
|
|
|
def test_unicode(self):
|
|
utf8 = b'\xcf\x96'.decode('UTF-8')
|
|
a = np.array([utf8], dtype=np.unicode_)
|
|
with tempdir() as tmpdir:
|
|
# set encoding as on windows it may not be unicode even on py3
|
|
np.savetxt(os.path.join(tmpdir, 'test.csv'), a, fmt=['%s'],
|
|
encoding='UTF-8')
|
|
|
|
def test_unicode_roundtrip(self):
|
|
utf8 = b'\xcf\x96'.decode('UTF-8')
|
|
a = np.array([utf8], dtype=np.unicode_)
|
|
# our gz wrapper support encoding
|
|
suffixes = ['', '.gz']
|
|
if HAS_BZ2:
|
|
suffixes.append('.bz2')
|
|
if HAS_LZMA:
|
|
suffixes.extend(['.xz', '.lzma'])
|
|
with tempdir() as tmpdir:
|
|
for suffix in suffixes:
|
|
np.savetxt(os.path.join(tmpdir, 'test.csv' + suffix), a,
|
|
fmt=['%s'], encoding='UTF-16-LE')
|
|
b = np.loadtxt(os.path.join(tmpdir, 'test.csv' + suffix),
|
|
encoding='UTF-16-LE', dtype=np.unicode_)
|
|
assert_array_equal(a, b)
|
|
|
|
def test_unicode_bytestream(self):
|
|
utf8 = b'\xcf\x96'.decode('UTF-8')
|
|
a = np.array([utf8], dtype=np.unicode_)
|
|
s = BytesIO()
|
|
np.savetxt(s, a, fmt=['%s'], encoding='UTF-8')
|
|
s.seek(0)
|
|
assert_equal(s.read().decode('UTF-8'), utf8 + '\n')
|
|
|
|
def test_unicode_stringstream(self):
|
|
utf8 = b'\xcf\x96'.decode('UTF-8')
|
|
a = np.array([utf8], dtype=np.unicode_)
|
|
s = StringIO()
|
|
np.savetxt(s, a, fmt=['%s'], encoding='UTF-8')
|
|
s.seek(0)
|
|
assert_equal(s.read(), utf8 + '\n')
|
|
|
|
@pytest.mark.parametrize("fmt", [u"%f", b"%f"])
|
|
@pytest.mark.parametrize("iotype", [StringIO, BytesIO])
|
|
def test_unicode_and_bytes_fmt(self, fmt, iotype):
|
|
# string type of fmt should not matter, see also gh-4053
|
|
a = np.array([1.])
|
|
s = iotype()
|
|
np.savetxt(s, a, fmt=fmt)
|
|
s.seek(0)
|
|
if iotype is StringIO:
|
|
assert_equal(s.read(), u"%f\n" % 1.)
|
|
else:
|
|
assert_equal(s.read(), b"%f\n" % 1.)
|
|
|
|
@pytest.mark.skipif(sys.platform=='win32', reason="files>4GB may not work")
|
|
@pytest.mark.slow
|
|
@requires_memory(free_bytes=7e9)
|
|
def test_large_zip(self):
|
|
def check_large_zip(memoryerror_raised):
|
|
memoryerror_raised.value = False
|
|
try:
|
|
# The test takes at least 6GB of memory, writes a file larger
|
|
# than 4GB. This tests the ``allowZip64`` kwarg to ``zipfile``
|
|
test_data = np.asarray([np.random.rand(
|
|
np.random.randint(50,100),4)
|
|
for i in range(800000)], dtype=object)
|
|
with tempdir() as tmpdir:
|
|
np.savez(os.path.join(tmpdir, 'test.npz'),
|
|
test_data=test_data)
|
|
except MemoryError:
|
|
memoryerror_raised.value = True
|
|
raise
|
|
# run in a subprocess to ensure memory is released on PyPy, see gh-15775
|
|
# Use an object in shared memory to re-raise the MemoryError exception
|
|
# in our process if needed, see gh-16889
|
|
memoryerror_raised = Value(c_bool)
|
|
|
|
# Since Python 3.8, the default start method for multiprocessing has
|
|
# been changed from 'fork' to 'spawn' on macOS, causing inconsistency
|
|
# on memory sharing model, lead to failed test for check_large_zip
|
|
ctx = get_context('fork')
|
|
p = ctx.Process(target=check_large_zip, args=(memoryerror_raised,))
|
|
p.start()
|
|
p.join()
|
|
if memoryerror_raised.value:
|
|
raise MemoryError("Child process raised a MemoryError exception")
|
|
# -9 indicates a SIGKILL, probably an OOM.
|
|
if p.exitcode == -9:
|
|
pytest.xfail("subprocess got a SIGKILL, apparently free memory was not sufficient")
|
|
assert p.exitcode == 0
|
|
|
|
class LoadTxtBase:
|
|
def check_compressed(self, fopen, suffixes):
|
|
# Test that we can load data from a compressed file
|
|
wanted = np.arange(6).reshape((2, 3))
|
|
linesep = ('\n', '\r\n', '\r')
|
|
for sep in linesep:
|
|
data = '0 1 2' + sep + '3 4 5'
|
|
for suffix in suffixes:
|
|
with temppath(suffix=suffix) as name:
|
|
with fopen(name, mode='wt', encoding='UTF-32-LE') as f:
|
|
f.write(data)
|
|
res = self.loadfunc(name, encoding='UTF-32-LE')
|
|
assert_array_equal(res, wanted)
|
|
with fopen(name, "rt", encoding='UTF-32-LE') as f:
|
|
res = self.loadfunc(f)
|
|
assert_array_equal(res, wanted)
|
|
|
|
def test_compressed_gzip(self):
|
|
self.check_compressed(gzip.open, ('.gz',))
|
|
|
|
@pytest.mark.skipif(not HAS_BZ2, reason="Needs bz2")
|
|
def test_compressed_bz2(self):
|
|
self.check_compressed(bz2.open, ('.bz2',))
|
|
|
|
@pytest.mark.skipif(not HAS_LZMA, reason="Needs lzma")
|
|
def test_compressed_lzma(self):
|
|
self.check_compressed(lzma.open, ('.xz', '.lzma'))
|
|
|
|
def test_encoding(self):
|
|
with temppath() as path:
|
|
with open(path, "wb") as f:
|
|
f.write('0.\n1.\n2.'.encode("UTF-16"))
|
|
x = self.loadfunc(path, encoding="UTF-16")
|
|
assert_array_equal(x, [0., 1., 2.])
|
|
|
|
def test_stringload(self):
|
|
# umlaute
|
|
nonascii = b'\xc3\xb6\xc3\xbc\xc3\xb6'.decode("UTF-8")
|
|
with temppath() as path:
|
|
with open(path, "wb") as f:
|
|
f.write(nonascii.encode("UTF-16"))
|
|
x = self.loadfunc(path, encoding="UTF-16", dtype=np.unicode_)
|
|
assert_array_equal(x, nonascii)
|
|
|
|
def test_binary_decode(self):
|
|
utf16 = b'\xff\xfeh\x04 \x00i\x04 \x00j\x04'
|
|
v = self.loadfunc(BytesIO(utf16), dtype=np.unicode_, encoding='UTF-16')
|
|
assert_array_equal(v, np.array(utf16.decode('UTF-16').split()))
|
|
|
|
def test_converters_decode(self):
|
|
# test converters that decode strings
|
|
c = TextIO()
|
|
c.write(b'\xcf\x96')
|
|
c.seek(0)
|
|
x = self.loadfunc(c, dtype=np.unicode_,
|
|
converters={0: lambda x: x.decode('UTF-8')})
|
|
a = np.array([b'\xcf\x96'.decode('UTF-8')])
|
|
assert_array_equal(x, a)
|
|
|
|
def test_converters_nodecode(self):
|
|
# test native string converters enabled by setting an encoding
|
|
utf8 = b'\xcf\x96'.decode('UTF-8')
|
|
with temppath() as path:
|
|
with io.open(path, 'wt', encoding='UTF-8') as f:
|
|
f.write(utf8)
|
|
x = self.loadfunc(path, dtype=np.unicode_,
|
|
converters={0: lambda x: x + 't'},
|
|
encoding='UTF-8')
|
|
a = np.array([utf8 + 't'])
|
|
assert_array_equal(x, a)
|
|
|
|
|
|
class TestLoadTxt(LoadTxtBase):
|
|
loadfunc = staticmethod(np.loadtxt)
|
|
|
|
def setup_method(self):
|
|
# lower chunksize for testing
|
|
self.orig_chunk = np.lib.npyio._loadtxt_chunksize
|
|
np.lib.npyio._loadtxt_chunksize = 1
|
|
|
|
def teardown_method(self):
|
|
np.lib.npyio._loadtxt_chunksize = self.orig_chunk
|
|
|
|
def test_record(self):
|
|
c = TextIO()
|
|
c.write('1 2\n3 4')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=[('x', np.int32), ('y', np.int32)])
|
|
a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
|
|
assert_array_equal(x, a)
|
|
|
|
d = TextIO()
|
|
d.write('M 64 75.0\nF 25 60.0')
|
|
d.seek(0)
|
|
mydescriptor = {'names': ('gender', 'age', 'weight'),
|
|
'formats': ('S1', 'i4', 'f4')}
|
|
b = np.array([('M', 64.0, 75.0),
|
|
('F', 25.0, 60.0)], dtype=mydescriptor)
|
|
y = np.loadtxt(d, dtype=mydescriptor)
|
|
assert_array_equal(y, b)
|
|
|
|
def test_array(self):
|
|
c = TextIO()
|
|
c.write('1 2\n3 4')
|
|
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int)
|
|
a = np.array([[1, 2], [3, 4]], int)
|
|
assert_array_equal(x, a)
|
|
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=float)
|
|
a = np.array([[1, 2], [3, 4]], float)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_1D(self):
|
|
c = TextIO()
|
|
c.write('1\n2\n3\n4\n')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int)
|
|
a = np.array([1, 2, 3, 4], int)
|
|
assert_array_equal(x, a)
|
|
|
|
c = TextIO()
|
|
c.write('1,2,3,4\n')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',')
|
|
a = np.array([1, 2, 3, 4], int)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_missing(self):
|
|
c = TextIO()
|
|
c.write('1,2,3,,5\n')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
converters={3: lambda s: int(s or - 999)})
|
|
a = np.array([1, 2, 3, -999, 5], int)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_converters_with_usecols(self):
|
|
c = TextIO()
|
|
c.write('1,2,3,,5\n6,7,8,9,10\n')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
converters={3: lambda s: int(s or - 999)},
|
|
usecols=(1, 3,))
|
|
a = np.array([[2, -999], [7, 9]], int)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_comments_unicode(self):
|
|
c = TextIO()
|
|
c.write('# comment\n1,2,3,5\n')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
comments=u'#')
|
|
a = np.array([1, 2, 3, 5], int)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_comments_byte(self):
|
|
c = TextIO()
|
|
c.write('# comment\n1,2,3,5\n')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
comments=b'#')
|
|
a = np.array([1, 2, 3, 5], int)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_comments_multiple(self):
|
|
c = TextIO()
|
|
c.write('# comment\n1,2,3\n@ comment2\n4,5,6 // comment3')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
comments=['#', '@', '//'])
|
|
a = np.array([[1, 2, 3], [4, 5, 6]], int)
|
|
assert_array_equal(x, a)
|
|
|
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|
reason="PyPy bug in error formatting")
|
|
def test_comments_multi_chars(self):
|
|
c = TextIO()
|
|
c.write('/* comment\n1,2,3,5\n')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
comments='/*')
|
|
a = np.array([1, 2, 3, 5], int)
|
|
assert_array_equal(x, a)
|
|
|
|
# Check that '/*' is not transformed to ['/', '*']
|
|
c = TextIO()
|
|
c.write('*/ comment\n1,2,3,5\n')
|
|
c.seek(0)
|
|
assert_raises(ValueError, np.loadtxt, c, dtype=int, delimiter=',',
|
|
comments='/*')
|
|
|
|
def test_skiprows(self):
|
|
c = TextIO()
|
|
c.write('comment\n1,2,3,5\n')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
skiprows=1)
|
|
a = np.array([1, 2, 3, 5], int)
|
|
assert_array_equal(x, a)
|
|
|
|
c = TextIO()
|
|
c.write('# comment\n1,2,3,5\n')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
skiprows=1)
|
|
a = np.array([1, 2, 3, 5], int)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_usecols(self):
|
|
a = np.array([[1, 2], [3, 4]], float)
|
|
c = BytesIO()
|
|
np.savetxt(c, a)
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=float, usecols=(1,))
|
|
assert_array_equal(x, a[:, 1])
|
|
|
|
a = np.array([[1, 2, 3], [3, 4, 5]], float)
|
|
c = BytesIO()
|
|
np.savetxt(c, a)
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=float, usecols=(1, 2))
|
|
assert_array_equal(x, a[:, 1:])
|
|
|
|
# Testing with arrays instead of tuples.
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=float, usecols=np.array([1, 2]))
|
|
assert_array_equal(x, a[:, 1:])
|
|
|
|
# Testing with an integer instead of a sequence
|
|
for int_type in [int, np.int8, np.int16,
|
|
np.int32, np.int64, np.uint8, np.uint16,
|
|
np.uint32, np.uint64]:
|
|
to_read = int_type(1)
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=float, usecols=to_read)
|
|
assert_array_equal(x, a[:, 1])
|
|
|
|
# Testing with some crazy custom integer type
|
|
class CrazyInt:
|
|
def __index__(self):
|
|
return 1
|
|
|
|
crazy_int = CrazyInt()
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=float, usecols=crazy_int)
|
|
assert_array_equal(x, a[:, 1])
|
|
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=float, usecols=(crazy_int,))
|
|
assert_array_equal(x, a[:, 1])
|
|
|
|
# Checking with dtypes defined converters.
|
|
data = '''JOE 70.1 25.3
|
|
BOB 60.5 27.9
|
|
'''
|
|
c = TextIO(data)
|
|
names = ['stid', 'temp']
|
|
dtypes = ['S4', 'f8']
|
|
arr = np.loadtxt(c, usecols=(0, 2), dtype=list(zip(names, dtypes)))
|
|
assert_equal(arr['stid'], [b"JOE", b"BOB"])
|
|
assert_equal(arr['temp'], [25.3, 27.9])
|
|
|
|
# Testing non-ints in usecols
|
|
c.seek(0)
|
|
bogus_idx = 1.5
|
|
assert_raises_regex(
|
|
TypeError,
|
|
'^usecols must be.*%s' % type(bogus_idx).__name__,
|
|
np.loadtxt, c, usecols=bogus_idx
|
|
)
|
|
|
|
assert_raises_regex(
|
|
TypeError,
|
|
'^usecols must be.*%s' % type(bogus_idx).__name__,
|
|
np.loadtxt, c, usecols=[0, bogus_idx, 0]
|
|
)
|
|
|
|
def test_bad_usecols(self):
|
|
with pytest.raises(OverflowError):
|
|
np.loadtxt(["1\n"], usecols=[2**64], delimiter=",")
|
|
with pytest.raises((ValueError, OverflowError)):
|
|
# Overflow error on 32bit platforms
|
|
np.loadtxt(["1\n"], usecols=[2**62], delimiter=",")
|
|
with pytest.raises(TypeError,
|
|
match="If a structured dtype .*. But 1 usecols were given and "
|
|
"the number of fields is 3."):
|
|
np.loadtxt(["1,1\n"], dtype="i,(2)i", usecols=[0], delimiter=",")
|
|
|
|
def test_fancy_dtype(self):
|
|
c = TextIO()
|
|
c.write('1,2,3.0\n4,5,6.0\n')
|
|
c.seek(0)
|
|
dt = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
|
|
x = np.loadtxt(c, dtype=dt, delimiter=',')
|
|
a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dt)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_shaped_dtype(self):
|
|
c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6")
|
|
dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
|
|
('block', int, (2, 3))])
|
|
x = np.loadtxt(c, dtype=dt)
|
|
a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])],
|
|
dtype=dt)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_3d_shaped_dtype(self):
|
|
c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6 7 8 9 10 11 12")
|
|
dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
|
|
('block', int, (2, 2, 3))])
|
|
x = np.loadtxt(c, dtype=dt)
|
|
a = np.array([('aaaa', 1.0, 8.0,
|
|
[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])],
|
|
dtype=dt)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_str_dtype(self):
|
|
# see gh-8033
|
|
c = ["str1", "str2"]
|
|
|
|
for dt in (str, np.bytes_):
|
|
a = np.array(["str1", "str2"], dtype=dt)
|
|
x = np.loadtxt(c, dtype=dt)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_empty_file(self):
|
|
with pytest.warns(UserWarning, match="input contained no data"):
|
|
c = TextIO()
|
|
x = np.loadtxt(c)
|
|
assert_equal(x.shape, (0,))
|
|
x = np.loadtxt(c, dtype=np.int64)
|
|
assert_equal(x.shape, (0,))
|
|
assert_(x.dtype == np.int64)
|
|
|
|
def test_unused_converter(self):
|
|
c = TextIO()
|
|
c.writelines(['1 21\n', '3 42\n'])
|
|
c.seek(0)
|
|
data = np.loadtxt(c, usecols=(1,),
|
|
converters={0: lambda s: int(s, 16)})
|
|
assert_array_equal(data, [21, 42])
|
|
|
|
c.seek(0)
|
|
data = np.loadtxt(c, usecols=(1,),
|
|
converters={1: lambda s: int(s, 16)})
|
|
assert_array_equal(data, [33, 66])
|
|
|
|
def test_dtype_with_object(self):
|
|
# Test using an explicit dtype with an object
|
|
data = """ 1; 2001-01-01
|
|
2; 2002-01-31 """
|
|
ndtype = [('idx', int), ('code', object)]
|
|
func = lambda s: strptime(s.strip(), "%Y-%m-%d")
|
|
converters = {1: func}
|
|
test = np.loadtxt(TextIO(data), delimiter=";", dtype=ndtype,
|
|
converters=converters)
|
|
control = np.array(
|
|
[(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))],
|
|
dtype=ndtype)
|
|
assert_equal(test, control)
|
|
|
|
def test_uint64_type(self):
|
|
tgt = (9223372043271415339, 9223372043271415853)
|
|
c = TextIO()
|
|
c.write("%s %s" % tgt)
|
|
c.seek(0)
|
|
res = np.loadtxt(c, dtype=np.uint64)
|
|
assert_equal(res, tgt)
|
|
|
|
def test_int64_type(self):
|
|
tgt = (-9223372036854775807, 9223372036854775807)
|
|
c = TextIO()
|
|
c.write("%s %s" % tgt)
|
|
c.seek(0)
|
|
res = np.loadtxt(c, dtype=np.int64)
|
|
assert_equal(res, tgt)
|
|
|
|
def test_from_float_hex(self):
|
|
# IEEE doubles and floats only, otherwise the float32
|
|
# conversion may fail.
|
|
tgt = np.logspace(-10, 10, 5).astype(np.float32)
|
|
tgt = np.hstack((tgt, -tgt)).astype(float)
|
|
inp = '\n'.join(map(float.hex, tgt))
|
|
c = TextIO()
|
|
c.write(inp)
|
|
for dt in [float, np.float32]:
|
|
c.seek(0)
|
|
res = np.loadtxt(
|
|
c, dtype=dt, converters=float.fromhex, encoding="latin1")
|
|
assert_equal(res, tgt, err_msg="%s" % dt)
|
|
|
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|
reason="PyPy bug in error formatting")
|
|
def test_default_float_converter_no_default_hex_conversion(self):
|
|
"""
|
|
Ensure that fromhex is only used for values with the correct prefix and
|
|
is not called by default. Regression test related to gh-19598.
|
|
"""
|
|
c = TextIO("a b c")
|
|
with pytest.raises(ValueError,
|
|
match=".*convert string 'a' to float64 at row 0, column 1"):
|
|
np.loadtxt(c)
|
|
|
|
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
|
|
reason="PyPy bug in error formatting")
|
|
def test_default_float_converter_exception(self):
|
|
"""
|
|
Ensure that the exception message raised during failed floating point
|
|
conversion is correct. Regression test related to gh-19598.
|
|
"""
|
|
c = TextIO("qrs tuv") # Invalid values for default float converter
|
|
with pytest.raises(ValueError,
|
|
match="could not convert string 'qrs' to float64"):
|
|
np.loadtxt(c)
|
|
|
|
def test_from_complex(self):
|
|
tgt = (complex(1, 1), complex(1, -1))
|
|
c = TextIO()
|
|
c.write("%s %s" % tgt)
|
|
c.seek(0)
|
|
res = np.loadtxt(c, dtype=complex)
|
|
assert_equal(res, tgt)
|
|
|
|
def test_complex_misformatted(self):
|
|
# test for backward compatibility
|
|
# some complex formats used to generate x+-yj
|
|
a = np.zeros((2, 2), dtype=np.complex128)
|
|
re = np.pi
|
|
im = np.e
|
|
a[:] = re - 1.0j * im
|
|
c = BytesIO()
|
|
np.savetxt(c, a, fmt='%.16e')
|
|
c.seek(0)
|
|
txt = c.read()
|
|
c.seek(0)
|
|
# misformat the sign on the imaginary part, gh 7895
|
|
txt_bad = txt.replace(b'e+00-', b'e00+-')
|
|
assert_(txt_bad != txt)
|
|
c.write(txt_bad)
|
|
c.seek(0)
|
|
res = np.loadtxt(c, dtype=complex)
|
|
assert_equal(res, a)
|
|
|
|
def test_universal_newline(self):
|
|
with temppath() as name:
|
|
with open(name, 'w') as f:
|
|
f.write('1 21\r3 42\r')
|
|
data = np.loadtxt(name)
|
|
assert_array_equal(data, [[1, 21], [3, 42]])
|
|
|
|
def test_empty_field_after_tab(self):
|
|
c = TextIO()
|
|
c.write('1 \t2 \t3\tstart \n4\t5\t6\t \n7\t8\t9.5\t')
|
|
c.seek(0)
|
|
dt = {'names': ('x', 'y', 'z', 'comment'),
|
|
'formats': ('<i4', '<i4', '<f4', '|S8')}
|
|
x = np.loadtxt(c, dtype=dt, delimiter='\t')
|
|
a = np.array([b'start ', b' ', b''])
|
|
assert_array_equal(x['comment'], a)
|
|
|
|
def test_unpack_structured(self):
|
|
txt = TextIO("M 21 72\nF 35 58")
|
|
dt = {'names': ('a', 'b', 'c'), 'formats': ('|S1', '<i4', '<f4')}
|
|
a, b, c = np.loadtxt(txt, dtype=dt, unpack=True)
|
|
assert_(a.dtype.str == '|S1')
|
|
assert_(b.dtype.str == '<i4')
|
|
assert_(c.dtype.str == '<f4')
|
|
assert_array_equal(a, np.array([b'M', b'F']))
|
|
assert_array_equal(b, np.array([21, 35]))
|
|
assert_array_equal(c, np.array([72., 58.]))
|
|
|
|
def test_ndmin_keyword(self):
|
|
c = TextIO()
|
|
c.write('1,2,3\n4,5,6')
|
|
c.seek(0)
|
|
assert_raises(ValueError, np.loadtxt, c, ndmin=3)
|
|
c.seek(0)
|
|
assert_raises(ValueError, np.loadtxt, c, ndmin=1.5)
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',', ndmin=1)
|
|
a = np.array([[1, 2, 3], [4, 5, 6]])
|
|
assert_array_equal(x, a)
|
|
|
|
d = TextIO()
|
|
d.write('0,1,2')
|
|
d.seek(0)
|
|
x = np.loadtxt(d, dtype=int, delimiter=',', ndmin=2)
|
|
assert_(x.shape == (1, 3))
|
|
d.seek(0)
|
|
x = np.loadtxt(d, dtype=int, delimiter=',', ndmin=1)
|
|
assert_(x.shape == (3,))
|
|
d.seek(0)
|
|
x = np.loadtxt(d, dtype=int, delimiter=',', ndmin=0)
|
|
assert_(x.shape == (3,))
|
|
|
|
e = TextIO()
|
|
e.write('0\n1\n2')
|
|
e.seek(0)
|
|
x = np.loadtxt(e, dtype=int, delimiter=',', ndmin=2)
|
|
assert_(x.shape == (3, 1))
|
|
e.seek(0)
|
|
x = np.loadtxt(e, dtype=int, delimiter=',', ndmin=1)
|
|
assert_(x.shape == (3,))
|
|
e.seek(0)
|
|
x = np.loadtxt(e, dtype=int, delimiter=',', ndmin=0)
|
|
assert_(x.shape == (3,))
|
|
|
|
# Test ndmin kw with empty file.
|
|
with pytest.warns(UserWarning, match="input contained no data"):
|
|
f = TextIO()
|
|
assert_(np.loadtxt(f, ndmin=2).shape == (0, 1,))
|
|
assert_(np.loadtxt(f, ndmin=1).shape == (0,))
|
|
|
|
def test_generator_source(self):
|
|
def count():
|
|
for i in range(10):
|
|
yield "%d" % i
|
|
|
|
res = np.loadtxt(count())
|
|
assert_array_equal(res, np.arange(10))
|
|
|
|
def test_bad_line(self):
|
|
c = TextIO()
|
|
c.write('1 2 3\n4 5 6\n2 3')
|
|
c.seek(0)
|
|
|
|
# Check for exception and that exception contains line number
|
|
assert_raises_regex(ValueError, "3", np.loadtxt, c)
|
|
|
|
def test_none_as_string(self):
|
|
# gh-5155, None should work as string when format demands it
|
|
c = TextIO()
|
|
c.write('100,foo,200\n300,None,400')
|
|
c.seek(0)
|
|
dt = np.dtype([('x', int), ('a', 'S10'), ('y', int)])
|
|
np.loadtxt(c, delimiter=',', dtype=dt, comments=None) # Should succeed
|
|
|
|
@pytest.mark.skipif(locale.getpreferredencoding() == 'ANSI_X3.4-1968',
|
|
reason="Wrong preferred encoding")
|
|
def test_binary_load(self):
|
|
butf8 = b"5,6,7,\xc3\x95scarscar\r\n15,2,3,hello\r\n"\
|
|
b"20,2,3,\xc3\x95scar\r\n"
|
|
sutf8 = butf8.decode("UTF-8").replace("\r", "").splitlines()
|
|
with temppath() as path:
|
|
with open(path, "wb") as f:
|
|
f.write(butf8)
|
|
with open(path, "rb") as f:
|
|
x = np.loadtxt(f, encoding="UTF-8", dtype=np.unicode_)
|
|
assert_array_equal(x, sutf8)
|
|
# test broken latin1 conversion people now rely on
|
|
with open(path, "rb") as f:
|
|
x = np.loadtxt(f, encoding="UTF-8", dtype="S")
|
|
x = [b'5,6,7,\xc3\x95scarscar', b'15,2,3,hello', b'20,2,3,\xc3\x95scar']
|
|
assert_array_equal(x, np.array(x, dtype="S"))
|
|
|
|
def test_max_rows(self):
|
|
c = TextIO()
|
|
c.write('1,2,3,5\n4,5,7,8\n2,1,4,5')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
max_rows=1)
|
|
a = np.array([1, 2, 3, 5], int)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_max_rows_with_skiprows(self):
|
|
c = TextIO()
|
|
c.write('comments\n1,2,3,5\n4,5,7,8\n2,1,4,5')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
skiprows=1, max_rows=1)
|
|
a = np.array([1, 2, 3, 5], int)
|
|
assert_array_equal(x, a)
|
|
|
|
c = TextIO()
|
|
c.write('comment\n1,2,3,5\n4,5,7,8\n2,1,4,5')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
skiprows=1, max_rows=2)
|
|
a = np.array([[1, 2, 3, 5], [4, 5, 7, 8]], int)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_max_rows_with_read_continuation(self):
|
|
c = TextIO()
|
|
c.write('1,2,3,5\n4,5,7,8\n2,1,4,5')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
max_rows=2)
|
|
a = np.array([[1, 2, 3, 5], [4, 5, 7, 8]], int)
|
|
assert_array_equal(x, a)
|
|
# test continuation
|
|
x = np.loadtxt(c, dtype=int, delimiter=',')
|
|
a = np.array([2,1,4,5], int)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_max_rows_larger(self):
|
|
#test max_rows > num rows
|
|
c = TextIO()
|
|
c.write('comment\n1,2,3,5\n4,5,7,8\n2,1,4,5')
|
|
c.seek(0)
|
|
x = np.loadtxt(c, dtype=int, delimiter=',',
|
|
skiprows=1, max_rows=6)
|
|
a = np.array([[1, 2, 3, 5], [4, 5, 7, 8], [2, 1, 4, 5]], int)
|
|
assert_array_equal(x, a)
|
|
|
|
@pytest.mark.parametrize(["skip", "data"], [
|
|
(1, ["ignored\n", "1,2\n", "\n", "3,4\n"]),
|
|
# "Bad" lines that do not end in newlines:
|
|
(1, ["ignored", "1,2", "", "3,4"]),
|
|
(1, StringIO("ignored\n1,2\n\n3,4")),
|
|
# Same as above, but do not skip any lines:
|
|
(0, ["-1,0\n", "1,2\n", "\n", "3,4\n"]),
|
|
(0, ["-1,0", "1,2", "", "3,4"]),
|
|
(0, StringIO("-1,0\n1,2\n\n3,4"))])
|
|
def test_max_rows_empty_lines(self, skip, data):
|
|
with pytest.warns(UserWarning,
|
|
match=f"Input line 3.*max_rows={3-skip}"):
|
|
res = np.loadtxt(data, dtype=int, skiprows=skip, delimiter=",",
|
|
max_rows=3-skip)
|
|
assert_array_equal(res, [[-1, 0], [1, 2], [3, 4]][skip:])
|
|
|
|
if isinstance(data, StringIO):
|
|
data.seek(0)
|
|
|
|
with warnings.catch_warnings():
|
|
warnings.simplefilter("error", UserWarning)
|
|
with pytest.raises(UserWarning):
|
|
np.loadtxt(data, dtype=int, skiprows=skip, delimiter=",",
|
|
max_rows=3-skip)
|
|
|
|
class Testfromregex:
|
|
def test_record(self):
|
|
c = TextIO()
|
|
c.write('1.312 foo\n1.534 bar\n4.444 qux')
|
|
c.seek(0)
|
|
|
|
dt = [('num', np.float64), ('val', 'S3')]
|
|
x = np.fromregex(c, r"([0-9.]+)\s+(...)", dt)
|
|
a = np.array([(1.312, 'foo'), (1.534, 'bar'), (4.444, 'qux')],
|
|
dtype=dt)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_record_2(self):
|
|
c = TextIO()
|
|
c.write('1312 foo\n1534 bar\n4444 qux')
|
|
c.seek(0)
|
|
|
|
dt = [('num', np.int32), ('val', 'S3')]
|
|
x = np.fromregex(c, r"(\d+)\s+(...)", dt)
|
|
a = np.array([(1312, 'foo'), (1534, 'bar'), (4444, 'qux')],
|
|
dtype=dt)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_record_3(self):
|
|
c = TextIO()
|
|
c.write('1312 foo\n1534 bar\n4444 qux')
|
|
c.seek(0)
|
|
|
|
dt = [('num', np.float64)]
|
|
x = np.fromregex(c, r"(\d+)\s+...", dt)
|
|
a = np.array([(1312,), (1534,), (4444,)], dtype=dt)
|
|
assert_array_equal(x, a)
|
|
|
|
@pytest.mark.parametrize("path_type", [str, Path])
|
|
def test_record_unicode(self, path_type):
|
|
utf8 = b'\xcf\x96'
|
|
with temppath() as str_path:
|
|
path = path_type(str_path)
|
|
with open(path, 'wb') as f:
|
|
f.write(b'1.312 foo' + utf8 + b' \n1.534 bar\n4.444 qux')
|
|
|
|
dt = [('num', np.float64), ('val', 'U4')]
|
|
x = np.fromregex(path, r"(?u)([0-9.]+)\s+(\w+)", dt, encoding='UTF-8')
|
|
a = np.array([(1.312, 'foo' + utf8.decode('UTF-8')), (1.534, 'bar'),
|
|
(4.444, 'qux')], dtype=dt)
|
|
assert_array_equal(x, a)
|
|
|
|
regexp = re.compile(r"([0-9.]+)\s+(\w+)", re.UNICODE)
|
|
x = np.fromregex(path, regexp, dt, encoding='UTF-8')
|
|
assert_array_equal(x, a)
|
|
|
|
def test_compiled_bytes(self):
|
|
regexp = re.compile(b'(\\d)')
|
|
c = BytesIO(b'123')
|
|
dt = [('num', np.float64)]
|
|
a = np.array([1, 2, 3], dtype=dt)
|
|
x = np.fromregex(c, regexp, dt)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_bad_dtype_not_structured(self):
|
|
regexp = re.compile(b'(\\d)')
|
|
c = BytesIO(b'123')
|
|
with pytest.raises(TypeError, match='structured datatype'):
|
|
np.fromregex(c, regexp, dtype=np.float64)
|
|
|
|
|
|
#####--------------------------------------------------------------------------
|
|
|
|
|
|
class TestFromTxt(LoadTxtBase):
|
|
loadfunc = staticmethod(np.genfromtxt)
|
|
|
|
def test_record(self):
|
|
# Test w/ explicit dtype
|
|
data = TextIO('1 2\n3 4')
|
|
test = np.genfromtxt(data, dtype=[('x', np.int32), ('y', np.int32)])
|
|
control = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
|
|
assert_equal(test, control)
|
|
#
|
|
data = TextIO('M 64.0 75.0\nF 25.0 60.0')
|
|
descriptor = {'names': ('gender', 'age', 'weight'),
|
|
'formats': ('S1', 'i4', 'f4')}
|
|
control = np.array([('M', 64.0, 75.0), ('F', 25.0, 60.0)],
|
|
dtype=descriptor)
|
|
test = np.genfromtxt(data, dtype=descriptor)
|
|
assert_equal(test, control)
|
|
|
|
def test_array(self):
|
|
# Test outputting a standard ndarray
|
|
data = TextIO('1 2\n3 4')
|
|
control = np.array([[1, 2], [3, 4]], dtype=int)
|
|
test = np.genfromtxt(data, dtype=int)
|
|
assert_array_equal(test, control)
|
|
#
|
|
data.seek(0)
|
|
control = np.array([[1, 2], [3, 4]], dtype=float)
|
|
test = np.loadtxt(data, dtype=float)
|
|
assert_array_equal(test, control)
|
|
|
|
def test_1D(self):
|
|
# Test squeezing to 1D
|
|
control = np.array([1, 2, 3, 4], int)
|
|
#
|
|
data = TextIO('1\n2\n3\n4\n')
|
|
test = np.genfromtxt(data, dtype=int)
|
|
assert_array_equal(test, control)
|
|
#
|
|
data = TextIO('1,2,3,4\n')
|
|
test = np.genfromtxt(data, dtype=int, delimiter=',')
|
|
assert_array_equal(test, control)
|
|
|
|
def test_comments(self):
|
|
# Test the stripping of comments
|
|
control = np.array([1, 2, 3, 5], int)
|
|
# Comment on its own line
|
|
data = TextIO('# comment\n1,2,3,5\n')
|
|
test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#')
|
|
assert_equal(test, control)
|
|
# Comment at the end of a line
|
|
data = TextIO('1,2,3,5# comment\n')
|
|
test = np.genfromtxt(data, dtype=int, delimiter=',', comments='#')
|
|
assert_equal(test, control)
|
|
|
|
def test_skiprows(self):
|
|
# Test row skipping
|
|
control = np.array([1, 2, 3, 5], int)
|
|
kwargs = dict(dtype=int, delimiter=',')
|
|
#
|
|
data = TextIO('comment\n1,2,3,5\n')
|
|
test = np.genfromtxt(data, skip_header=1, **kwargs)
|
|
assert_equal(test, control)
|
|
#
|
|
data = TextIO('# comment\n1,2,3,5\n')
|
|
test = np.loadtxt(data, skiprows=1, **kwargs)
|
|
assert_equal(test, control)
|
|
|
|
def test_skip_footer(self):
|
|
data = ["# %i" % i for i in range(1, 6)]
|
|
data.append("A, B, C")
|
|
data.extend(["%i,%3.1f,%03s" % (i, i, i) for i in range(51)])
|
|
data[-1] = "99,99"
|
|
kwargs = dict(delimiter=",", names=True, skip_header=5, skip_footer=10)
|
|
test = np.genfromtxt(TextIO("\n".join(data)), **kwargs)
|
|
ctrl = np.array([("%f" % i, "%f" % i, "%f" % i) for i in range(41)],
|
|
dtype=[(_, float) for _ in "ABC"])
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_skip_footer_with_invalid(self):
|
|
with suppress_warnings() as sup:
|
|
sup.filter(ConversionWarning)
|
|
basestr = '1 1\n2 2\n3 3\n4 4\n5 \n6 \n7 \n'
|
|
# Footer too small to get rid of all invalid values
|
|
assert_raises(ValueError, np.genfromtxt,
|
|
TextIO(basestr), skip_footer=1)
|
|
# except ValueError:
|
|
# pass
|
|
a = np.genfromtxt(
|
|
TextIO(basestr), skip_footer=1, invalid_raise=False)
|
|
assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]))
|
|
#
|
|
a = np.genfromtxt(TextIO(basestr), skip_footer=3)
|
|
assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]]))
|
|
#
|
|
basestr = '1 1\n2 \n3 3\n4 4\n5 \n6 6\n7 7\n'
|
|
a = np.genfromtxt(
|
|
TextIO(basestr), skip_footer=1, invalid_raise=False)
|
|
assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.], [6., 6.]]))
|
|
a = np.genfromtxt(
|
|
TextIO(basestr), skip_footer=3, invalid_raise=False)
|
|
assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.]]))
|
|
|
|
def test_header(self):
|
|
# Test retrieving a header
|
|
data = TextIO('gender age weight\nM 64.0 75.0\nF 25.0 60.0')
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(data, dtype=None, names=True)
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
control = {'gender': np.array([b'M', b'F']),
|
|
'age': np.array([64.0, 25.0]),
|
|
'weight': np.array([75.0, 60.0])}
|
|
assert_equal(test['gender'], control['gender'])
|
|
assert_equal(test['age'], control['age'])
|
|
assert_equal(test['weight'], control['weight'])
|
|
|
|
def test_auto_dtype(self):
|
|
# Test the automatic definition of the output dtype
|
|
data = TextIO('A 64 75.0 3+4j True\nBCD 25 60.0 5+6j False')
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(data, dtype=None)
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
control = [np.array([b'A', b'BCD']),
|
|
np.array([64, 25]),
|
|
np.array([75.0, 60.0]),
|
|
np.array([3 + 4j, 5 + 6j]),
|
|
np.array([True, False]), ]
|
|
assert_equal(test.dtype.names, ['f0', 'f1', 'f2', 'f3', 'f4'])
|
|
for (i, ctrl) in enumerate(control):
|
|
assert_equal(test['f%i' % i], ctrl)
|
|
|
|
def test_auto_dtype_uniform(self):
|
|
# Tests whether the output dtype can be uniformized
|
|
data = TextIO('1 2 3 4\n5 6 7 8\n')
|
|
test = np.genfromtxt(data, dtype=None)
|
|
control = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])
|
|
assert_equal(test, control)
|
|
|
|
def test_fancy_dtype(self):
|
|
# Check that a nested dtype isn't MIA
|
|
data = TextIO('1,2,3.0\n4,5,6.0\n')
|
|
fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
|
|
test = np.genfromtxt(data, dtype=fancydtype, delimiter=',')
|
|
control = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype)
|
|
assert_equal(test, control)
|
|
|
|
def test_names_overwrite(self):
|
|
# Test overwriting the names of the dtype
|
|
descriptor = {'names': ('g', 'a', 'w'),
|
|
'formats': ('S1', 'i4', 'f4')}
|
|
data = TextIO(b'M 64.0 75.0\nF 25.0 60.0')
|
|
names = ('gender', 'age', 'weight')
|
|
test = np.genfromtxt(data, dtype=descriptor, names=names)
|
|
descriptor['names'] = names
|
|
control = np.array([('M', 64.0, 75.0),
|
|
('F', 25.0, 60.0)], dtype=descriptor)
|
|
assert_equal(test, control)
|
|
|
|
def test_bad_fname(self):
|
|
with pytest.raises(TypeError, match='fname must be a string,'):
|
|
np.genfromtxt(123)
|
|
|
|
def test_commented_header(self):
|
|
# Check that names can be retrieved even if the line is commented out.
|
|
data = TextIO("""
|
|
#gender age weight
|
|
M 21 72.100000
|
|
F 35 58.330000
|
|
M 33 21.99
|
|
""")
|
|
# The # is part of the first name and should be deleted automatically.
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(data, names=True, dtype=None)
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)],
|
|
dtype=[('gender', '|S1'), ('age', int), ('weight', float)])
|
|
assert_equal(test, ctrl)
|
|
# Ditto, but we should get rid of the first element
|
|
data = TextIO(b"""
|
|
# gender age weight
|
|
M 21 72.100000
|
|
F 35 58.330000
|
|
M 33 21.99
|
|
""")
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(data, names=True, dtype=None)
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_names_and_comments_none(self):
|
|
# Tests case when names is true but comments is None (gh-10780)
|
|
data = TextIO('col1 col2\n 1 2\n 3 4')
|
|
test = np.genfromtxt(data, dtype=(int, int), comments=None, names=True)
|
|
control = np.array([(1, 2), (3, 4)], dtype=[('col1', int), ('col2', int)])
|
|
assert_equal(test, control)
|
|
|
|
def test_file_is_closed_on_error(self):
|
|
# gh-13200
|
|
with tempdir() as tmpdir:
|
|
fpath = os.path.join(tmpdir, "test.csv")
|
|
with open(fpath, "wb") as f:
|
|
f.write(u'\N{GREEK PI SYMBOL}'.encode('utf8'))
|
|
|
|
# ResourceWarnings are emitted from a destructor, so won't be
|
|
# detected by regular propagation to errors.
|
|
with assert_no_warnings():
|
|
with pytest.raises(UnicodeDecodeError):
|
|
np.genfromtxt(fpath, encoding="ascii")
|
|
|
|
def test_autonames_and_usecols(self):
|
|
# Tests names and usecols
|
|
data = TextIO('A B C D\n aaaa 121 45 9.1')
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(data, usecols=('A', 'C', 'D'),
|
|
names=True, dtype=None)
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
control = np.array(('aaaa', 45, 9.1),
|
|
dtype=[('A', '|S4'), ('C', int), ('D', float)])
|
|
assert_equal(test, control)
|
|
|
|
def test_converters_with_usecols(self):
|
|
# Test the combination user-defined converters and usecol
|
|
data = TextIO('1,2,3,,5\n6,7,8,9,10\n')
|
|
test = np.genfromtxt(data, dtype=int, delimiter=',',
|
|
converters={3: lambda s: int(s or - 999)},
|
|
usecols=(1, 3,))
|
|
control = np.array([[2, -999], [7, 9]], int)
|
|
assert_equal(test, control)
|
|
|
|
def test_converters_with_usecols_and_names(self):
|
|
# Tests names and usecols
|
|
data = TextIO('A B C D\n aaaa 121 45 9.1')
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(data, usecols=('A', 'C', 'D'), names=True,
|
|
dtype=None,
|
|
converters={'C': lambda s: 2 * int(s)})
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
control = np.array(('aaaa', 90, 9.1),
|
|
dtype=[('A', '|S4'), ('C', int), ('D', float)])
|
|
assert_equal(test, control)
|
|
|
|
def test_converters_cornercases(self):
|
|
# Test the conversion to datetime.
|
|
converter = {
|
|
'date': lambda s: strptime(s, '%Y-%m-%d %H:%M:%SZ')}
|
|
data = TextIO('2009-02-03 12:00:00Z, 72214.0')
|
|
test = np.genfromtxt(data, delimiter=',', dtype=None,
|
|
names=['date', 'stid'], converters=converter)
|
|
control = np.array((datetime(2009, 2, 3), 72214.),
|
|
dtype=[('date', np.object_), ('stid', float)])
|
|
assert_equal(test, control)
|
|
|
|
def test_converters_cornercases2(self):
|
|
# Test the conversion to datetime64.
|
|
converter = {
|
|
'date': lambda s: np.datetime64(strptime(s, '%Y-%m-%d %H:%M:%SZ'))}
|
|
data = TextIO('2009-02-03 12:00:00Z, 72214.0')
|
|
test = np.genfromtxt(data, delimiter=',', dtype=None,
|
|
names=['date', 'stid'], converters=converter)
|
|
control = np.array((datetime(2009, 2, 3), 72214.),
|
|
dtype=[('date', 'datetime64[us]'), ('stid', float)])
|
|
assert_equal(test, control)
|
|
|
|
def test_unused_converter(self):
|
|
# Test whether unused converters are forgotten
|
|
data = TextIO("1 21\n 3 42\n")
|
|
test = np.genfromtxt(data, usecols=(1,),
|
|
converters={0: lambda s: int(s, 16)})
|
|
assert_equal(test, [21, 42])
|
|
#
|
|
data.seek(0)
|
|
test = np.genfromtxt(data, usecols=(1,),
|
|
converters={1: lambda s: int(s, 16)})
|
|
assert_equal(test, [33, 66])
|
|
|
|
def test_invalid_converter(self):
|
|
strip_rand = lambda x: float((b'r' in x.lower() and x.split()[-1]) or
|
|
(b'r' not in x.lower() and x.strip() or 0.0))
|
|
strip_per = lambda x: float((b'%' in x.lower() and x.split()[0]) or
|
|
(b'%' not in x.lower() and x.strip() or 0.0))
|
|
s = TextIO("D01N01,10/1/2003 ,1 %,R 75,400,600\r\n"
|
|
"L24U05,12/5/2003, 2 %,1,300, 150.5\r\n"
|
|
"D02N03,10/10/2004,R 1,,7,145.55")
|
|
kwargs = dict(
|
|
converters={2: strip_per, 3: strip_rand}, delimiter=",",
|
|
dtype=None)
|
|
assert_raises(ConverterError, np.genfromtxt, s, **kwargs)
|
|
|
|
def test_tricky_converter_bug1666(self):
|
|
# Test some corner cases
|
|
s = TextIO('q1,2\nq3,4')
|
|
cnv = lambda s: float(s[1:])
|
|
test = np.genfromtxt(s, delimiter=',', converters={0: cnv})
|
|
control = np.array([[1., 2.], [3., 4.]])
|
|
assert_equal(test, control)
|
|
|
|
def test_dtype_with_converters(self):
|
|
dstr = "2009; 23; 46"
|
|
test = np.genfromtxt(TextIO(dstr,),
|
|
delimiter=";", dtype=float, converters={0: bytes})
|
|
control = np.array([('2009', 23., 46)],
|
|
dtype=[('f0', '|S4'), ('f1', float), ('f2', float)])
|
|
assert_equal(test, control)
|
|
test = np.genfromtxt(TextIO(dstr,),
|
|
delimiter=";", dtype=float, converters={0: float})
|
|
control = np.array([2009., 23., 46],)
|
|
assert_equal(test, control)
|
|
|
|
def test_dtype_with_converters_and_usecols(self):
|
|
dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n"
|
|
dmap = {'1:1':0, '1:n':1, 'm:1':2, 'm:n':3}
|
|
dtyp = [('e1','i4'),('e2','i4'),('e3','i2'),('n', 'i1')]
|
|
conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]}
|
|
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
|
|
names=None, converters=conv)
|
|
control = np.rec.array([(1,5,-1,0), (2,8,-1,1), (3,3,-2,3)], dtype=dtyp)
|
|
assert_equal(test, control)
|
|
dtyp = [('e1','i4'),('e2','i4'),('n', 'i1')]
|
|
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
|
|
usecols=(0,1,3), names=None, converters=conv)
|
|
control = np.rec.array([(1,5,0), (2,8,1), (3,3,3)], dtype=dtyp)
|
|
assert_equal(test, control)
|
|
|
|
def test_dtype_with_object(self):
|
|
# Test using an explicit dtype with an object
|
|
data = """ 1; 2001-01-01
|
|
2; 2002-01-31 """
|
|
ndtype = [('idx', int), ('code', object)]
|
|
func = lambda s: strptime(s.strip(), "%Y-%m-%d")
|
|
converters = {1: func}
|
|
test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype,
|
|
converters=converters)
|
|
control = np.array(
|
|
[(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))],
|
|
dtype=ndtype)
|
|
assert_equal(test, control)
|
|
|
|
ndtype = [('nest', [('idx', int), ('code', object)])]
|
|
with assert_raises_regex(NotImplementedError,
|
|
'Nested fields.* not supported.*'):
|
|
test = np.genfromtxt(TextIO(data), delimiter=";",
|
|
dtype=ndtype, converters=converters)
|
|
|
|
# nested but empty fields also aren't supported
|
|
ndtype = [('idx', int), ('code', object), ('nest', [])]
|
|
with assert_raises_regex(NotImplementedError,
|
|
'Nested fields.* not supported.*'):
|
|
test = np.genfromtxt(TextIO(data), delimiter=";",
|
|
dtype=ndtype, converters=converters)
|
|
|
|
def test_dtype_with_object_no_converter(self):
|
|
# Object without a converter uses bytes:
|
|
parsed = np.genfromtxt(TextIO("1"), dtype=object)
|
|
assert parsed[()] == b"1"
|
|
parsed = np.genfromtxt(TextIO("string"), dtype=object)
|
|
assert parsed[()] == b"string"
|
|
|
|
def test_userconverters_with_explicit_dtype(self):
|
|
# Test user_converters w/ explicit (standard) dtype
|
|
data = TextIO('skip,skip,2001-01-01,1.0,skip')
|
|
test = np.genfromtxt(data, delimiter=",", names=None, dtype=float,
|
|
usecols=(2, 3), converters={2: bytes})
|
|
control = np.array([('2001-01-01', 1.)],
|
|
dtype=[('', '|S10'), ('', float)])
|
|
assert_equal(test, control)
|
|
|
|
def test_utf8_userconverters_with_explicit_dtype(self):
|
|
utf8 = b'\xcf\x96'
|
|
with temppath() as path:
|
|
with open(path, 'wb') as f:
|
|
f.write(b'skip,skip,2001-01-01' + utf8 + b',1.0,skip')
|
|
test = np.genfromtxt(path, delimiter=",", names=None, dtype=float,
|
|
usecols=(2, 3), converters={2: np.compat.unicode},
|
|
encoding='UTF-8')
|
|
control = np.array([('2001-01-01' + utf8.decode('UTF-8'), 1.)],
|
|
dtype=[('', '|U11'), ('', float)])
|
|
assert_equal(test, control)
|
|
|
|
def test_spacedelimiter(self):
|
|
# Test space delimiter
|
|
data = TextIO("1 2 3 4 5\n6 7 8 9 10")
|
|
test = np.genfromtxt(data)
|
|
control = np.array([[1., 2., 3., 4., 5.],
|
|
[6., 7., 8., 9., 10.]])
|
|
assert_equal(test, control)
|
|
|
|
def test_integer_delimiter(self):
|
|
# Test using an integer for delimiter
|
|
data = " 1 2 3\n 4 5 67\n890123 4"
|
|
test = np.genfromtxt(TextIO(data), delimiter=3)
|
|
control = np.array([[1, 2, 3], [4, 5, 67], [890, 123, 4]])
|
|
assert_equal(test, control)
|
|
|
|
def test_missing(self):
|
|
data = TextIO('1,2,3,,5\n')
|
|
test = np.genfromtxt(data, dtype=int, delimiter=',',
|
|
converters={3: lambda s: int(s or - 999)})
|
|
control = np.array([1, 2, 3, -999, 5], int)
|
|
assert_equal(test, control)
|
|
|
|
def test_missing_with_tabs(self):
|
|
# Test w/ a delimiter tab
|
|
txt = "1\t2\t3\n\t2\t\n1\t\t3"
|
|
test = np.genfromtxt(TextIO(txt), delimiter="\t",
|
|
usemask=True,)
|
|
ctrl_d = np.array([(1, 2, 3), (np.nan, 2, np.nan), (1, np.nan, 3)],)
|
|
ctrl_m = np.array([(0, 0, 0), (1, 0, 1), (0, 1, 0)], dtype=bool)
|
|
assert_equal(test.data, ctrl_d)
|
|
assert_equal(test.mask, ctrl_m)
|
|
|
|
def test_usecols(self):
|
|
# Test the selection of columns
|
|
# Select 1 column
|
|
control = np.array([[1, 2], [3, 4]], float)
|
|
data = TextIO()
|
|
np.savetxt(data, control)
|
|
data.seek(0)
|
|
test = np.genfromtxt(data, dtype=float, usecols=(1,))
|
|
assert_equal(test, control[:, 1])
|
|
#
|
|
control = np.array([[1, 2, 3], [3, 4, 5]], float)
|
|
data = TextIO()
|
|
np.savetxt(data, control)
|
|
data.seek(0)
|
|
test = np.genfromtxt(data, dtype=float, usecols=(1, 2))
|
|
assert_equal(test, control[:, 1:])
|
|
# Testing with arrays instead of tuples.
|
|
data.seek(0)
|
|
test = np.genfromtxt(data, dtype=float, usecols=np.array([1, 2]))
|
|
assert_equal(test, control[:, 1:])
|
|
|
|
def test_usecols_as_css(self):
|
|
# Test giving usecols with a comma-separated string
|
|
data = "1 2 3\n4 5 6"
|
|
test = np.genfromtxt(TextIO(data),
|
|
names="a, b, c", usecols="a, c")
|
|
ctrl = np.array([(1, 3), (4, 6)], dtype=[(_, float) for _ in "ac"])
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_usecols_with_structured_dtype(self):
|
|
# Test usecols with an explicit structured dtype
|
|
data = TextIO("JOE 70.1 25.3\nBOB 60.5 27.9")
|
|
names = ['stid', 'temp']
|
|
dtypes = ['S4', 'f8']
|
|
test = np.genfromtxt(
|
|
data, usecols=(0, 2), dtype=list(zip(names, dtypes)))
|
|
assert_equal(test['stid'], [b"JOE", b"BOB"])
|
|
assert_equal(test['temp'], [25.3, 27.9])
|
|
|
|
def test_usecols_with_integer(self):
|
|
# Test usecols with an integer
|
|
test = np.genfromtxt(TextIO(b"1 2 3\n4 5 6"), usecols=0)
|
|
assert_equal(test, np.array([1., 4.]))
|
|
|
|
def test_usecols_with_named_columns(self):
|
|
# Test usecols with named columns
|
|
ctrl = np.array([(1, 3), (4, 6)], dtype=[('a', float), ('c', float)])
|
|
data = "1 2 3\n4 5 6"
|
|
kwargs = dict(names="a, b, c")
|
|
test = np.genfromtxt(TextIO(data), usecols=(0, -1), **kwargs)
|
|
assert_equal(test, ctrl)
|
|
test = np.genfromtxt(TextIO(data),
|
|
usecols=('a', 'c'), **kwargs)
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_empty_file(self):
|
|
# Test that an empty file raises the proper warning.
|
|
with suppress_warnings() as sup:
|
|
sup.filter(message="genfromtxt: Empty input file:")
|
|
data = TextIO()
|
|
test = np.genfromtxt(data)
|
|
assert_equal(test, np.array([]))
|
|
|
|
# when skip_header > 0
|
|
test = np.genfromtxt(data, skip_header=1)
|
|
assert_equal(test, np.array([]))
|
|
|
|
def test_fancy_dtype_alt(self):
|
|
# Check that a nested dtype isn't MIA
|
|
data = TextIO('1,2,3.0\n4,5,6.0\n')
|
|
fancydtype = np.dtype([('x', int), ('y', [('t', int), ('s', float)])])
|
|
test = np.genfromtxt(data, dtype=fancydtype, delimiter=',', usemask=True)
|
|
control = ma.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=fancydtype)
|
|
assert_equal(test, control)
|
|
|
|
def test_shaped_dtype(self):
|
|
c = TextIO("aaaa 1.0 8.0 1 2 3 4 5 6")
|
|
dt = np.dtype([('name', 'S4'), ('x', float), ('y', float),
|
|
('block', int, (2, 3))])
|
|
x = np.genfromtxt(c, dtype=dt)
|
|
a = np.array([('aaaa', 1.0, 8.0, [[1, 2, 3], [4, 5, 6]])],
|
|
dtype=dt)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_withmissing(self):
|
|
data = TextIO('A,B\n0,1\n2,N/A')
|
|
kwargs = dict(delimiter=",", missing_values="N/A", names=True)
|
|
test = np.genfromtxt(data, dtype=None, usemask=True, **kwargs)
|
|
control = ma.array([(0, 1), (2, -1)],
|
|
mask=[(False, False), (False, True)],
|
|
dtype=[('A', int), ('B', int)])
|
|
assert_equal(test, control)
|
|
assert_equal(test.mask, control.mask)
|
|
#
|
|
data.seek(0)
|
|
test = np.genfromtxt(data, usemask=True, **kwargs)
|
|
control = ma.array([(0, 1), (2, -1)],
|
|
mask=[(False, False), (False, True)],
|
|
dtype=[('A', float), ('B', float)])
|
|
assert_equal(test, control)
|
|
assert_equal(test.mask, control.mask)
|
|
|
|
def test_user_missing_values(self):
|
|
data = "A, B, C\n0, 0., 0j\n1, N/A, 1j\n-9, 2.2, N/A\n3, -99, 3j"
|
|
basekwargs = dict(dtype=None, delimiter=",", names=True,)
|
|
mdtype = [('A', int), ('B', float), ('C', complex)]
|
|
#
|
|
test = np.genfromtxt(TextIO(data), missing_values="N/A",
|
|
**basekwargs)
|
|
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
|
|
(-9, 2.2, -999j), (3, -99, 3j)],
|
|
mask=[(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)],
|
|
dtype=mdtype)
|
|
assert_equal(test, control)
|
|
#
|
|
basekwargs['dtype'] = mdtype
|
|
test = np.genfromtxt(TextIO(data),
|
|
missing_values={0: -9, 1: -99, 2: -999j}, usemask=True, **basekwargs)
|
|
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
|
|
(-9, 2.2, -999j), (3, -99, 3j)],
|
|
mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
|
|
dtype=mdtype)
|
|
assert_equal(test, control)
|
|
#
|
|
test = np.genfromtxt(TextIO(data),
|
|
missing_values={0: -9, 'B': -99, 'C': -999j},
|
|
usemask=True,
|
|
**basekwargs)
|
|
control = ma.array([(0, 0.0, 0j), (1, -999, 1j),
|
|
(-9, 2.2, -999j), (3, -99, 3j)],
|
|
mask=[(0, 0, 0), (0, 1, 0), (1, 0, 1), (0, 1, 0)],
|
|
dtype=mdtype)
|
|
assert_equal(test, control)
|
|
|
|
def test_user_filling_values(self):
|
|
# Test with missing and filling values
|
|
ctrl = np.array([(0, 3), (4, -999)], dtype=[('a', int), ('b', int)])
|
|
data = "N/A, 2, 3\n4, ,???"
|
|
kwargs = dict(delimiter=",",
|
|
dtype=int,
|
|
names="a,b,c",
|
|
missing_values={0: "N/A", 'b': " ", 2: "???"},
|
|
filling_values={0: 0, 'b': 0, 2: -999})
|
|
test = np.genfromtxt(TextIO(data), **kwargs)
|
|
ctrl = np.array([(0, 2, 3), (4, 0, -999)],
|
|
dtype=[(_, int) for _ in "abc"])
|
|
assert_equal(test, ctrl)
|
|
#
|
|
test = np.genfromtxt(TextIO(data), usecols=(0, -1), **kwargs)
|
|
ctrl = np.array([(0, 3), (4, -999)], dtype=[(_, int) for _ in "ac"])
|
|
assert_equal(test, ctrl)
|
|
|
|
data2 = "1,2,*,4\n5,*,7,8\n"
|
|
test = np.genfromtxt(TextIO(data2), delimiter=',', dtype=int,
|
|
missing_values="*", filling_values=0)
|
|
ctrl = np.array([[1, 2, 0, 4], [5, 0, 7, 8]])
|
|
assert_equal(test, ctrl)
|
|
test = np.genfromtxt(TextIO(data2), delimiter=',', dtype=int,
|
|
missing_values="*", filling_values=-1)
|
|
ctrl = np.array([[1, 2, -1, 4], [5, -1, 7, 8]])
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_withmissing_float(self):
|
|
data = TextIO('A,B\n0,1.5\n2,-999.00')
|
|
test = np.genfromtxt(data, dtype=None, delimiter=',',
|
|
missing_values='-999.0', names=True, usemask=True)
|
|
control = ma.array([(0, 1.5), (2, -1.)],
|
|
mask=[(False, False), (False, True)],
|
|
dtype=[('A', int), ('B', float)])
|
|
assert_equal(test, control)
|
|
assert_equal(test.mask, control.mask)
|
|
|
|
def test_with_masked_column_uniform(self):
|
|
# Test masked column
|
|
data = TextIO('1 2 3\n4 5 6\n')
|
|
test = np.genfromtxt(data, dtype=None,
|
|
missing_values='2,5', usemask=True)
|
|
control = ma.array([[1, 2, 3], [4, 5, 6]], mask=[[0, 1, 0], [0, 1, 0]])
|
|
assert_equal(test, control)
|
|
|
|
def test_with_masked_column_various(self):
|
|
# Test masked column
|
|
data = TextIO('True 2 3\nFalse 5 6\n')
|
|
test = np.genfromtxt(data, dtype=None,
|
|
missing_values='2,5', usemask=True)
|
|
control = ma.array([(1, 2, 3), (0, 5, 6)],
|
|
mask=[(0, 1, 0), (0, 1, 0)],
|
|
dtype=[('f0', bool), ('f1', bool), ('f2', int)])
|
|
assert_equal(test, control)
|
|
|
|
def test_invalid_raise(self):
|
|
# Test invalid raise
|
|
data = ["1, 1, 1, 1, 1"] * 50
|
|
for i in range(5):
|
|
data[10 * i] = "2, 2, 2, 2 2"
|
|
data.insert(0, "a, b, c, d, e")
|
|
mdata = TextIO("\n".join(data))
|
|
|
|
kwargs = dict(delimiter=",", dtype=None, names=True)
|
|
def f():
|
|
return np.genfromtxt(mdata, invalid_raise=False, **kwargs)
|
|
mtest = assert_warns(ConversionWarning, f)
|
|
assert_equal(len(mtest), 45)
|
|
assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
|
|
#
|
|
mdata.seek(0)
|
|
assert_raises(ValueError, np.genfromtxt, mdata,
|
|
delimiter=",", names=True)
|
|
|
|
def test_invalid_raise_with_usecols(self):
|
|
# Test invalid_raise with usecols
|
|
data = ["1, 1, 1, 1, 1"] * 50
|
|
for i in range(5):
|
|
data[10 * i] = "2, 2, 2, 2 2"
|
|
data.insert(0, "a, b, c, d, e")
|
|
mdata = TextIO("\n".join(data))
|
|
|
|
kwargs = dict(delimiter=",", dtype=None, names=True,
|
|
invalid_raise=False)
|
|
def f():
|
|
return np.genfromtxt(mdata, usecols=(0, 4), **kwargs)
|
|
mtest = assert_warns(ConversionWarning, f)
|
|
assert_equal(len(mtest), 45)
|
|
assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'ae']))
|
|
#
|
|
mdata.seek(0)
|
|
mtest = np.genfromtxt(mdata, usecols=(0, 1), **kwargs)
|
|
assert_equal(len(mtest), 50)
|
|
control = np.ones(50, dtype=[(_, int) for _ in 'ab'])
|
|
control[[10 * _ for _ in range(5)]] = (2, 2)
|
|
assert_equal(mtest, control)
|
|
|
|
def test_inconsistent_dtype(self):
|
|
# Test inconsistent dtype
|
|
data = ["1, 1, 1, 1, -1.1"] * 50
|
|
mdata = TextIO("\n".join(data))
|
|
|
|
converters = {4: lambda x: "(%s)" % x.decode()}
|
|
kwargs = dict(delimiter=",", converters=converters,
|
|
dtype=[(_, int) for _ in 'abcde'],)
|
|
assert_raises(ValueError, np.genfromtxt, mdata, **kwargs)
|
|
|
|
def test_default_field_format(self):
|
|
# Test default format
|
|
data = "0, 1, 2.3\n4, 5, 6.7"
|
|
mtest = np.genfromtxt(TextIO(data),
|
|
delimiter=",", dtype=None, defaultfmt="f%02i")
|
|
ctrl = np.array([(0, 1, 2.3), (4, 5, 6.7)],
|
|
dtype=[("f00", int), ("f01", int), ("f02", float)])
|
|
assert_equal(mtest, ctrl)
|
|
|
|
def test_single_dtype_wo_names(self):
|
|
# Test single dtype w/o names
|
|
data = "0, 1, 2.3\n4, 5, 6.7"
|
|
mtest = np.genfromtxt(TextIO(data),
|
|
delimiter=",", dtype=float, defaultfmt="f%02i")
|
|
ctrl = np.array([[0., 1., 2.3], [4., 5., 6.7]], dtype=float)
|
|
assert_equal(mtest, ctrl)
|
|
|
|
def test_single_dtype_w_explicit_names(self):
|
|
# Test single dtype w explicit names
|
|
data = "0, 1, 2.3\n4, 5, 6.7"
|
|
mtest = np.genfromtxt(TextIO(data),
|
|
delimiter=",", dtype=float, names="a, b, c")
|
|
ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)],
|
|
dtype=[(_, float) for _ in "abc"])
|
|
assert_equal(mtest, ctrl)
|
|
|
|
def test_single_dtype_w_implicit_names(self):
|
|
# Test single dtype w implicit names
|
|
data = "a, b, c\n0, 1, 2.3\n4, 5, 6.7"
|
|
mtest = np.genfromtxt(TextIO(data),
|
|
delimiter=",", dtype=float, names=True)
|
|
ctrl = np.array([(0., 1., 2.3), (4., 5., 6.7)],
|
|
dtype=[(_, float) for _ in "abc"])
|
|
assert_equal(mtest, ctrl)
|
|
|
|
def test_easy_structured_dtype(self):
|
|
# Test easy structured dtype
|
|
data = "0, 1, 2.3\n4, 5, 6.7"
|
|
mtest = np.genfromtxt(TextIO(data), delimiter=",",
|
|
dtype=(int, float, float), defaultfmt="f_%02i")
|
|
ctrl = np.array([(0, 1., 2.3), (4, 5., 6.7)],
|
|
dtype=[("f_00", int), ("f_01", float), ("f_02", float)])
|
|
assert_equal(mtest, ctrl)
|
|
|
|
def test_autostrip(self):
|
|
# Test autostrip
|
|
data = "01/01/2003 , 1.3, abcde"
|
|
kwargs = dict(delimiter=",", dtype=None)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
mtest = np.genfromtxt(TextIO(data), **kwargs)
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
ctrl = np.array([('01/01/2003 ', 1.3, ' abcde')],
|
|
dtype=[('f0', '|S12'), ('f1', float), ('f2', '|S8')])
|
|
assert_equal(mtest, ctrl)
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
mtest = np.genfromtxt(TextIO(data), autostrip=True, **kwargs)
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
ctrl = np.array([('01/01/2003', 1.3, 'abcde')],
|
|
dtype=[('f0', '|S10'), ('f1', float), ('f2', '|S5')])
|
|
assert_equal(mtest, ctrl)
|
|
|
|
def test_replace_space(self):
|
|
# Test the 'replace_space' option
|
|
txt = "A.A, B (B), C:C\n1, 2, 3.14"
|
|
# Test default: replace ' ' by '_' and delete non-alphanum chars
|
|
test = np.genfromtxt(TextIO(txt),
|
|
delimiter=",", names=True, dtype=None)
|
|
ctrl_dtype = [("AA", int), ("B_B", int), ("CC", float)]
|
|
ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype)
|
|
assert_equal(test, ctrl)
|
|
# Test: no replace, no delete
|
|
test = np.genfromtxt(TextIO(txt),
|
|
delimiter=",", names=True, dtype=None,
|
|
replace_space='', deletechars='')
|
|
ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", float)]
|
|
ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype)
|
|
assert_equal(test, ctrl)
|
|
# Test: no delete (spaces are replaced by _)
|
|
test = np.genfromtxt(TextIO(txt),
|
|
delimiter=",", names=True, dtype=None,
|
|
deletechars='')
|
|
ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", float)]
|
|
ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype)
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_replace_space_known_dtype(self):
|
|
# Test the 'replace_space' (and related) options when dtype != None
|
|
txt = "A.A, B (B), C:C\n1, 2, 3"
|
|
# Test default: replace ' ' by '_' and delete non-alphanum chars
|
|
test = np.genfromtxt(TextIO(txt),
|
|
delimiter=",", names=True, dtype=int)
|
|
ctrl_dtype = [("AA", int), ("B_B", int), ("CC", int)]
|
|
ctrl = np.array((1, 2, 3), dtype=ctrl_dtype)
|
|
assert_equal(test, ctrl)
|
|
# Test: no replace, no delete
|
|
test = np.genfromtxt(TextIO(txt),
|
|
delimiter=",", names=True, dtype=int,
|
|
replace_space='', deletechars='')
|
|
ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", int)]
|
|
ctrl = np.array((1, 2, 3), dtype=ctrl_dtype)
|
|
assert_equal(test, ctrl)
|
|
# Test: no delete (spaces are replaced by _)
|
|
test = np.genfromtxt(TextIO(txt),
|
|
delimiter=",", names=True, dtype=int,
|
|
deletechars='')
|
|
ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", int)]
|
|
ctrl = np.array((1, 2, 3), dtype=ctrl_dtype)
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_incomplete_names(self):
|
|
# Test w/ incomplete names
|
|
data = "A,,C\n0,1,2\n3,4,5"
|
|
kwargs = dict(delimiter=",", names=True)
|
|
# w/ dtype=None
|
|
ctrl = np.array([(0, 1, 2), (3, 4, 5)],
|
|
dtype=[(_, int) for _ in ('A', 'f0', 'C')])
|
|
test = np.genfromtxt(TextIO(data), dtype=None, **kwargs)
|
|
assert_equal(test, ctrl)
|
|
# w/ default dtype
|
|
ctrl = np.array([(0, 1, 2), (3, 4, 5)],
|
|
dtype=[(_, float) for _ in ('A', 'f0', 'C')])
|
|
test = np.genfromtxt(TextIO(data), **kwargs)
|
|
|
|
def test_names_auto_completion(self):
|
|
# Make sure that names are properly completed
|
|
data = "1 2 3\n 4 5 6"
|
|
test = np.genfromtxt(TextIO(data),
|
|
dtype=(int, float, int), names="a")
|
|
ctrl = np.array([(1, 2, 3), (4, 5, 6)],
|
|
dtype=[('a', int), ('f0', float), ('f1', int)])
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_names_with_usecols_bug1636(self):
|
|
# Make sure we pick up the right names w/ usecols
|
|
data = "A,B,C,D,E\n0,1,2,3,4\n0,1,2,3,4\n0,1,2,3,4"
|
|
ctrl_names = ("A", "C", "E")
|
|
test = np.genfromtxt(TextIO(data),
|
|
dtype=(int, int, int), delimiter=",",
|
|
usecols=(0, 2, 4), names=True)
|
|
assert_equal(test.dtype.names, ctrl_names)
|
|
#
|
|
test = np.genfromtxt(TextIO(data),
|
|
dtype=(int, int, int), delimiter=",",
|
|
usecols=("A", "C", "E"), names=True)
|
|
assert_equal(test.dtype.names, ctrl_names)
|
|
#
|
|
test = np.genfromtxt(TextIO(data),
|
|
dtype=int, delimiter=",",
|
|
usecols=("A", "C", "E"), names=True)
|
|
assert_equal(test.dtype.names, ctrl_names)
|
|
|
|
def test_fixed_width_names(self):
|
|
# Test fix-width w/ names
|
|
data = " A B C\n 0 1 2.3\n 45 67 9."
|
|
kwargs = dict(delimiter=(5, 5, 4), names=True, dtype=None)
|
|
ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)],
|
|
dtype=[('A', int), ('B', int), ('C', float)])
|
|
test = np.genfromtxt(TextIO(data), **kwargs)
|
|
assert_equal(test, ctrl)
|
|
#
|
|
kwargs = dict(delimiter=5, names=True, dtype=None)
|
|
ctrl = np.array([(0, 1, 2.3), (45, 67, 9.)],
|
|
dtype=[('A', int), ('B', int), ('C', float)])
|
|
test = np.genfromtxt(TextIO(data), **kwargs)
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_filling_values(self):
|
|
# Test missing values
|
|
data = b"1, 2, 3\n1, , 5\n0, 6, \n"
|
|
kwargs = dict(delimiter=",", dtype=None, filling_values=-999)
|
|
ctrl = np.array([[1, 2, 3], [1, -999, 5], [0, 6, -999]], dtype=int)
|
|
test = np.genfromtxt(TextIO(data), **kwargs)
|
|
assert_equal(test, ctrl)
|
|
|
|
def test_comments_is_none(self):
|
|
# Github issue 329 (None was previously being converted to 'None').
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(TextIO("test1,testNonetherestofthedata"),
|
|
dtype=None, comments=None, delimiter=',')
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
assert_equal(test[1], b'testNonetherestofthedata')
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(TextIO("test1, testNonetherestofthedata"),
|
|
dtype=None, comments=None, delimiter=',')
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
assert_equal(test[1], b' testNonetherestofthedata')
|
|
|
|
def test_latin1(self):
|
|
latin1 = b'\xf6\xfc\xf6'
|
|
norm = b"norm1,norm2,norm3\n"
|
|
enc = b"test1,testNonethe" + latin1 + b",test3\n"
|
|
s = norm + enc + norm
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(TextIO(s),
|
|
dtype=None, comments=None, delimiter=',')
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
assert_equal(test[1, 0], b"test1")
|
|
assert_equal(test[1, 1], b"testNonethe" + latin1)
|
|
assert_equal(test[1, 2], b"test3")
|
|
test = np.genfromtxt(TextIO(s),
|
|
dtype=None, comments=None, delimiter=',',
|
|
encoding='latin1')
|
|
assert_equal(test[1, 0], u"test1")
|
|
assert_equal(test[1, 1], u"testNonethe" + latin1.decode('latin1'))
|
|
assert_equal(test[1, 2], u"test3")
|
|
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(TextIO(b"0,testNonethe" + latin1),
|
|
dtype=None, comments=None, delimiter=',')
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
assert_equal(test['f0'], 0)
|
|
assert_equal(test['f1'], b"testNonethe" + latin1)
|
|
|
|
def test_binary_decode_autodtype(self):
|
|
utf16 = b'\xff\xfeh\x04 \x00i\x04 \x00j\x04'
|
|
v = self.loadfunc(BytesIO(utf16), dtype=None, encoding='UTF-16')
|
|
assert_array_equal(v, np.array(utf16.decode('UTF-16').split()))
|
|
|
|
def test_utf8_byte_encoding(self):
|
|
utf8 = b"\xcf\x96"
|
|
norm = b"norm1,norm2,norm3\n"
|
|
enc = b"test1,testNonethe" + utf8 + b",test3\n"
|
|
s = norm + enc + norm
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '', np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(TextIO(s),
|
|
dtype=None, comments=None, delimiter=',')
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
ctl = np.array([
|
|
[b'norm1', b'norm2', b'norm3'],
|
|
[b'test1', b'testNonethe' + utf8, b'test3'],
|
|
[b'norm1', b'norm2', b'norm3']])
|
|
assert_array_equal(test, ctl)
|
|
|
|
def test_utf8_file(self):
|
|
utf8 = b"\xcf\x96"
|
|
with temppath() as path:
|
|
with open(path, "wb") as f:
|
|
f.write((b"test1,testNonethe" + utf8 + b",test3\n") * 2)
|
|
test = np.genfromtxt(path, dtype=None, comments=None,
|
|
delimiter=',', encoding="UTF-8")
|
|
ctl = np.array([
|
|
["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"],
|
|
["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"]],
|
|
dtype=np.unicode_)
|
|
assert_array_equal(test, ctl)
|
|
|
|
# test a mixed dtype
|
|
with open(path, "wb") as f:
|
|
f.write(b"0,testNonethe" + utf8)
|
|
test = np.genfromtxt(path, dtype=None, comments=None,
|
|
delimiter=',', encoding="UTF-8")
|
|
assert_equal(test['f0'], 0)
|
|
assert_equal(test['f1'], "testNonethe" + utf8.decode("UTF-8"))
|
|
|
|
def test_utf8_file_nodtype_unicode(self):
|
|
# bytes encoding with non-latin1 -> unicode upcast
|
|
utf8 = u'\u03d6'
|
|
latin1 = u'\xf6\xfc\xf6'
|
|
|
|
# skip test if cannot encode utf8 test string with preferred
|
|
# encoding. The preferred encoding is assumed to be the default
|
|
# encoding of io.open. Will need to change this for PyTest, maybe
|
|
# using pytest.mark.xfail(raises=***).
|
|
try:
|
|
encoding = locale.getpreferredencoding()
|
|
utf8.encode(encoding)
|
|
except (UnicodeError, ImportError):
|
|
pytest.skip('Skipping test_utf8_file_nodtype_unicode, '
|
|
'unable to encode utf8 in preferred encoding')
|
|
|
|
with temppath() as path:
|
|
with io.open(path, "wt") as f:
|
|
f.write(u"norm1,norm2,norm3\n")
|
|
f.write(u"norm1," + latin1 + u",norm3\n")
|
|
f.write(u"test1,testNonethe" + utf8 + u",test3\n")
|
|
with warnings.catch_warnings(record=True) as w:
|
|
warnings.filterwarnings('always', '',
|
|
np.VisibleDeprecationWarning)
|
|
test = np.genfromtxt(path, dtype=None, comments=None,
|
|
delimiter=',')
|
|
# Check for warning when encoding not specified.
|
|
assert_(w[0].category is np.VisibleDeprecationWarning)
|
|
ctl = np.array([
|
|
["norm1", "norm2", "norm3"],
|
|
["norm1", latin1, "norm3"],
|
|
["test1", "testNonethe" + utf8, "test3"]],
|
|
dtype=np.unicode_)
|
|
assert_array_equal(test, ctl)
|
|
|
|
def test_recfromtxt(self):
|
|
#
|
|
data = TextIO('A,B\n0,1\n2,3')
|
|
kwargs = dict(delimiter=",", missing_values="N/A", names=True)
|
|
test = np.recfromtxt(data, **kwargs)
|
|
control = np.array([(0, 1), (2, 3)],
|
|
dtype=[('A', int), ('B', int)])
|
|
assert_(isinstance(test, np.recarray))
|
|
assert_equal(test, control)
|
|
#
|
|
data = TextIO('A,B\n0,1\n2,N/A')
|
|
test = np.recfromtxt(data, dtype=None, usemask=True, **kwargs)
|
|
control = ma.array([(0, 1), (2, -1)],
|
|
mask=[(False, False), (False, True)],
|
|
dtype=[('A', int), ('B', int)])
|
|
assert_equal(test, control)
|
|
assert_equal(test.mask, control.mask)
|
|
assert_equal(test.A, [0, 2])
|
|
|
|
def test_recfromcsv(self):
|
|
#
|
|
data = TextIO('A,B\n0,1\n2,3')
|
|
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
|
|
test = np.recfromcsv(data, dtype=None, **kwargs)
|
|
control = np.array([(0, 1), (2, 3)],
|
|
dtype=[('A', int), ('B', int)])
|
|
assert_(isinstance(test, np.recarray))
|
|
assert_equal(test, control)
|
|
#
|
|
data = TextIO('A,B\n0,1\n2,N/A')
|
|
test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs)
|
|
control = ma.array([(0, 1), (2, -1)],
|
|
mask=[(False, False), (False, True)],
|
|
dtype=[('A', int), ('B', int)])
|
|
assert_equal(test, control)
|
|
assert_equal(test.mask, control.mask)
|
|
assert_equal(test.A, [0, 2])
|
|
#
|
|
data = TextIO('A,B\n0,1\n2,3')
|
|
test = np.recfromcsv(data, missing_values='N/A',)
|
|
control = np.array([(0, 1), (2, 3)],
|
|
dtype=[('a', int), ('b', int)])
|
|
assert_(isinstance(test, np.recarray))
|
|
assert_equal(test, control)
|
|
#
|
|
data = TextIO('A,B\n0,1\n2,3')
|
|
dtype = [('a', int), ('b', float)]
|
|
test = np.recfromcsv(data, missing_values='N/A', dtype=dtype)
|
|
control = np.array([(0, 1), (2, 3)],
|
|
dtype=dtype)
|
|
assert_(isinstance(test, np.recarray))
|
|
assert_equal(test, control)
|
|
|
|
#gh-10394
|
|
data = TextIO('color\n"red"\n"blue"')
|
|
test = np.recfromcsv(data, converters={0: lambda x: x.strip(b'\"')})
|
|
control = np.array([('red',), ('blue',)], dtype=[('color', (bytes, 4))])
|
|
assert_equal(test.dtype, control.dtype)
|
|
assert_equal(test, control)
|
|
|
|
def test_max_rows(self):
|
|
# Test the `max_rows` keyword argument.
|
|
data = '1 2\n3 4\n5 6\n7 8\n9 10\n'
|
|
txt = TextIO(data)
|
|
a1 = np.genfromtxt(txt, max_rows=3)
|
|
a2 = np.genfromtxt(txt)
|
|
assert_equal(a1, [[1, 2], [3, 4], [5, 6]])
|
|
assert_equal(a2, [[7, 8], [9, 10]])
|
|
|
|
# max_rows must be at least 1.
|
|
assert_raises(ValueError, np.genfromtxt, TextIO(data), max_rows=0)
|
|
|
|
# An input with several invalid rows.
|
|
data = '1 1\n2 2\n0 \n3 3\n4 4\n5 \n6 \n7 \n'
|
|
|
|
test = np.genfromtxt(TextIO(data), max_rows=2)
|
|
control = np.array([[1., 1.], [2., 2.]])
|
|
assert_equal(test, control)
|
|
|
|
# Test keywords conflict
|
|
assert_raises(ValueError, np.genfromtxt, TextIO(data), skip_footer=1,
|
|
max_rows=4)
|
|
|
|
# Test with invalid value
|
|
assert_raises(ValueError, np.genfromtxt, TextIO(data), max_rows=4)
|
|
|
|
# Test with invalid not raise
|
|
with suppress_warnings() as sup:
|
|
sup.filter(ConversionWarning)
|
|
|
|
test = np.genfromtxt(TextIO(data), max_rows=4, invalid_raise=False)
|
|
control = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])
|
|
assert_equal(test, control)
|
|
|
|
test = np.genfromtxt(TextIO(data), max_rows=5, invalid_raise=False)
|
|
control = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])
|
|
assert_equal(test, control)
|
|
|
|
# Structured array with field names.
|
|
data = 'a b\n#c d\n1 1\n2 2\n#0 \n3 3\n4 4\n5 5\n'
|
|
|
|
# Test with header, names and comments
|
|
txt = TextIO(data)
|
|
test = np.genfromtxt(txt, skip_header=1, max_rows=3, names=True)
|
|
control = np.array([(1.0, 1.0), (2.0, 2.0), (3.0, 3.0)],
|
|
dtype=[('c', '<f8'), ('d', '<f8')])
|
|
assert_equal(test, control)
|
|
# To continue reading the same "file", don't use skip_header or
|
|
# names, and use the previously determined dtype.
|
|
test = np.genfromtxt(txt, max_rows=None, dtype=test.dtype)
|
|
control = np.array([(4.0, 4.0), (5.0, 5.0)],
|
|
dtype=[('c', '<f8'), ('d', '<f8')])
|
|
assert_equal(test, control)
|
|
|
|
def test_gft_using_filename(self):
|
|
# Test that we can load data from a filename as well as a file
|
|
# object
|
|
tgt = np.arange(6).reshape((2, 3))
|
|
linesep = ('\n', '\r\n', '\r')
|
|
|
|
for sep in linesep:
|
|
data = '0 1 2' + sep + '3 4 5'
|
|
with temppath() as name:
|
|
with open(name, 'w') as f:
|
|
f.write(data)
|
|
res = np.genfromtxt(name)
|
|
assert_array_equal(res, tgt)
|
|
|
|
def test_gft_from_gzip(self):
|
|
# Test that we can load data from a gzipped file
|
|
wanted = np.arange(6).reshape((2, 3))
|
|
linesep = ('\n', '\r\n', '\r')
|
|
|
|
for sep in linesep:
|
|
data = '0 1 2' + sep + '3 4 5'
|
|
s = BytesIO()
|
|
with gzip.GzipFile(fileobj=s, mode='w') as g:
|
|
g.write(asbytes(data))
|
|
|
|
with temppath(suffix='.gz2') as name:
|
|
with open(name, 'w') as f:
|
|
f.write(data)
|
|
assert_array_equal(np.genfromtxt(name), wanted)
|
|
|
|
def test_gft_using_generator(self):
|
|
# gft doesn't work with unicode.
|
|
def count():
|
|
for i in range(10):
|
|
yield asbytes("%d" % i)
|
|
|
|
res = np.genfromtxt(count())
|
|
assert_array_equal(res, np.arange(10))
|
|
|
|
def test_auto_dtype_largeint(self):
|
|
# Regression test for numpy/numpy#5635 whereby large integers could
|
|
# cause OverflowErrors.
|
|
|
|
# Test the automatic definition of the output dtype
|
|
#
|
|
# 2**66 = 73786976294838206464 => should convert to float
|
|
# 2**34 = 17179869184 => should convert to int64
|
|
# 2**10 = 1024 => should convert to int (int32 on 32-bit systems,
|
|
# int64 on 64-bit systems)
|
|
|
|
data = TextIO('73786976294838206464 17179869184 1024')
|
|
|
|
test = np.genfromtxt(data, dtype=None)
|
|
|
|
assert_equal(test.dtype.names, ['f0', 'f1', 'f2'])
|
|
|
|
assert_(test.dtype['f0'] == float)
|
|
assert_(test.dtype['f1'] == np.int64)
|
|
assert_(test.dtype['f2'] == np.int_)
|
|
|
|
assert_allclose(test['f0'], 73786976294838206464.)
|
|
assert_equal(test['f1'], 17179869184)
|
|
assert_equal(test['f2'], 1024)
|
|
|
|
def test_unpack_float_data(self):
|
|
txt = TextIO("1,2,3\n4,5,6\n7,8,9\n0.0,1.0,2.0")
|
|
a, b, c = np.loadtxt(txt, delimiter=",", unpack=True)
|
|
assert_array_equal(a, np.array([1.0, 4.0, 7.0, 0.0]))
|
|
assert_array_equal(b, np.array([2.0, 5.0, 8.0, 1.0]))
|
|
assert_array_equal(c, np.array([3.0, 6.0, 9.0, 2.0]))
|
|
|
|
def test_unpack_structured(self):
|
|
# Regression test for gh-4341
|
|
# Unpacking should work on structured arrays
|
|
txt = TextIO("M 21 72\nF 35 58")
|
|
dt = {'names': ('a', 'b', 'c'), 'formats': ('S1', 'i4', 'f4')}
|
|
a, b, c = np.genfromtxt(txt, dtype=dt, unpack=True)
|
|
assert_equal(a.dtype, np.dtype('S1'))
|
|
assert_equal(b.dtype, np.dtype('i4'))
|
|
assert_equal(c.dtype, np.dtype('f4'))
|
|
assert_array_equal(a, np.array([b'M', b'F']))
|
|
assert_array_equal(b, np.array([21, 35]))
|
|
assert_array_equal(c, np.array([72., 58.]))
|
|
|
|
def test_unpack_auto_dtype(self):
|
|
# Regression test for gh-4341
|
|
# Unpacking should work when dtype=None
|
|
txt = TextIO("M 21 72.\nF 35 58.")
|
|
expected = (np.array(["M", "F"]), np.array([21, 35]), np.array([72., 58.]))
|
|
test = np.genfromtxt(txt, dtype=None, unpack=True, encoding="utf-8")
|
|
for arr, result in zip(expected, test):
|
|
assert_array_equal(arr, result)
|
|
assert_equal(arr.dtype, result.dtype)
|
|
|
|
def test_unpack_single_name(self):
|
|
# Regression test for gh-4341
|
|
# Unpacking should work when structured dtype has only one field
|
|
txt = TextIO("21\n35")
|
|
dt = {'names': ('a',), 'formats': ('i4',)}
|
|
expected = np.array([21, 35], dtype=np.int32)
|
|
test = np.genfromtxt(txt, dtype=dt, unpack=True)
|
|
assert_array_equal(expected, test)
|
|
assert_equal(expected.dtype, test.dtype)
|
|
|
|
def test_squeeze_scalar(self):
|
|
# Regression test for gh-4341
|
|
# Unpacking a scalar should give zero-dim output,
|
|
# even if dtype is structured
|
|
txt = TextIO("1")
|
|
dt = {'names': ('a',), 'formats': ('i4',)}
|
|
expected = np.array((1,), dtype=np.int32)
|
|
test = np.genfromtxt(txt, dtype=dt, unpack=True)
|
|
assert_array_equal(expected, test)
|
|
assert_equal((), test.shape)
|
|
assert_equal(expected.dtype, test.dtype)
|
|
|
|
@pytest.mark.parametrize("ndim", [0, 1, 2])
|
|
def test_ndmin_keyword(self, ndim: int):
|
|
# lets have the same behaivour of ndmin as loadtxt
|
|
# as they should be the same for non-missing values
|
|
txt = "42"
|
|
|
|
a = np.loadtxt(StringIO(txt), ndmin=ndim)
|
|
b = np.genfromtxt(StringIO(txt), ndmin=ndim)
|
|
|
|
assert_array_equal(a, b)
|
|
|
|
|
|
class TestPathUsage:
|
|
# Test that pathlib.Path can be used
|
|
def test_loadtxt(self):
|
|
with temppath(suffix='.txt') as path:
|
|
path = Path(path)
|
|
a = np.array([[1.1, 2], [3, 4]])
|
|
np.savetxt(path, a)
|
|
x = np.loadtxt(path)
|
|
assert_array_equal(x, a)
|
|
|
|
def test_save_load(self):
|
|
# Test that pathlib.Path instances can be used with save.
|
|
with temppath(suffix='.npy') as path:
|
|
path = Path(path)
|
|
a = np.array([[1, 2], [3, 4]], int)
|
|
np.save(path, a)
|
|
data = np.load(path)
|
|
assert_array_equal(data, a)
|
|
|
|
def test_save_load_memmap(self):
|
|
# Test that pathlib.Path instances can be loaded mem-mapped.
|
|
with temppath(suffix='.npy') as path:
|
|
path = Path(path)
|
|
a = np.array([[1, 2], [3, 4]], int)
|
|
np.save(path, a)
|
|
data = np.load(path, mmap_mode='r')
|
|
assert_array_equal(data, a)
|
|
# close the mem-mapped file
|
|
del data
|
|
if IS_PYPY:
|
|
break_cycles()
|
|
break_cycles()
|
|
|
|
def test_save_load_memmap_readwrite(self):
|
|
# Test that pathlib.Path instances can be written mem-mapped.
|
|
with temppath(suffix='.npy') as path:
|
|
path = Path(path)
|
|
a = np.array([[1, 2], [3, 4]], int)
|
|
np.save(path, a)
|
|
b = np.load(path, mmap_mode='r+')
|
|
a[0][0] = 5
|
|
b[0][0] = 5
|
|
del b # closes the file
|
|
if IS_PYPY:
|
|
break_cycles()
|
|
break_cycles()
|
|
data = np.load(path)
|
|
assert_array_equal(data, a)
|
|
|
|
def test_savez_load(self):
|
|
# Test that pathlib.Path instances can be used with savez.
|
|
with temppath(suffix='.npz') as path:
|
|
path = Path(path)
|
|
np.savez(path, lab='place holder')
|
|
with np.load(path) as data:
|
|
assert_array_equal(data['lab'], 'place holder')
|
|
|
|
def test_savez_compressed_load(self):
|
|
# Test that pathlib.Path instances can be used with savez.
|
|
with temppath(suffix='.npz') as path:
|
|
path = Path(path)
|
|
np.savez_compressed(path, lab='place holder')
|
|
data = np.load(path)
|
|
assert_array_equal(data['lab'], 'place holder')
|
|
data.close()
|
|
|
|
def test_genfromtxt(self):
|
|
with temppath(suffix='.txt') as path:
|
|
path = Path(path)
|
|
a = np.array([(1, 2), (3, 4)])
|
|
np.savetxt(path, a)
|
|
data = np.genfromtxt(path)
|
|
assert_array_equal(a, data)
|
|
|
|
def test_recfromtxt(self):
|
|
with temppath(suffix='.txt') as path:
|
|
path = Path(path)
|
|
with path.open('w') as f:
|
|
f.write(u'A,B\n0,1\n2,3')
|
|
|
|
kwargs = dict(delimiter=",", missing_values="N/A", names=True)
|
|
test = np.recfromtxt(path, **kwargs)
|
|
control = np.array([(0, 1), (2, 3)],
|
|
dtype=[('A', int), ('B', int)])
|
|
assert_(isinstance(test, np.recarray))
|
|
assert_equal(test, control)
|
|
|
|
def test_recfromcsv(self):
|
|
with temppath(suffix='.txt') as path:
|
|
path = Path(path)
|
|
with path.open('w') as f:
|
|
f.write(u'A,B\n0,1\n2,3')
|
|
|
|
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
|
|
test = np.recfromcsv(path, dtype=None, **kwargs)
|
|
control = np.array([(0, 1), (2, 3)],
|
|
dtype=[('A', int), ('B', int)])
|
|
assert_(isinstance(test, np.recarray))
|
|
assert_equal(test, control)
|
|
|
|
|
|
def test_gzip_load():
|
|
a = np.random.random((5, 5))
|
|
|
|
s = BytesIO()
|
|
f = gzip.GzipFile(fileobj=s, mode="w")
|
|
|
|
np.save(f, a)
|
|
f.close()
|
|
s.seek(0)
|
|
|
|
f = gzip.GzipFile(fileobj=s, mode="r")
|
|
assert_array_equal(np.load(f), a)
|
|
|
|
|
|
# These next two classes encode the minimal API needed to save()/load() arrays.
|
|
# The `test_ducktyping` ensures they work correctly
|
|
class JustWriter:
|
|
def __init__(self, base):
|
|
self.base = base
|
|
|
|
def write(self, s):
|
|
return self.base.write(s)
|
|
|
|
def flush(self):
|
|
return self.base.flush()
|
|
|
|
class JustReader:
|
|
def __init__(self, base):
|
|
self.base = base
|
|
|
|
def read(self, n):
|
|
return self.base.read(n)
|
|
|
|
def seek(self, off, whence=0):
|
|
return self.base.seek(off, whence)
|
|
|
|
|
|
def test_ducktyping():
|
|
a = np.random.random((5, 5))
|
|
|
|
s = BytesIO()
|
|
f = JustWriter(s)
|
|
|
|
np.save(f, a)
|
|
f.flush()
|
|
s.seek(0)
|
|
|
|
f = JustReader(s)
|
|
assert_array_equal(np.load(f), a)
|
|
|
|
|
|
|
|
def test_gzip_loadtxt():
|
|
# Thanks to another windows brokenness, we can't use
|
|
# NamedTemporaryFile: a file created from this function cannot be
|
|
# reopened by another open call. So we first put the gzipped string
|
|
# of the test reference array, write it to a securely opened file,
|
|
# which is then read from by the loadtxt function
|
|
s = BytesIO()
|
|
g = gzip.GzipFile(fileobj=s, mode='w')
|
|
g.write(b'1 2 3\n')
|
|
g.close()
|
|
|
|
s.seek(0)
|
|
with temppath(suffix='.gz') as name:
|
|
with open(name, 'wb') as f:
|
|
f.write(s.read())
|
|
res = np.loadtxt(name)
|
|
s.close()
|
|
|
|
assert_array_equal(res, [1, 2, 3])
|
|
|
|
|
|
def test_gzip_loadtxt_from_string():
|
|
s = BytesIO()
|
|
f = gzip.GzipFile(fileobj=s, mode="w")
|
|
f.write(b'1 2 3\n')
|
|
f.close()
|
|
s.seek(0)
|
|
|
|
f = gzip.GzipFile(fileobj=s, mode="r")
|
|
assert_array_equal(np.loadtxt(f), [1, 2, 3])
|
|
|
|
|
|
def test_npzfile_dict():
|
|
s = BytesIO()
|
|
x = np.zeros((3, 3))
|
|
y = np.zeros((3, 3))
|
|
|
|
np.savez(s, x=x, y=y)
|
|
s.seek(0)
|
|
|
|
z = np.load(s)
|
|
|
|
assert_('x' in z)
|
|
assert_('y' in z)
|
|
assert_('x' in z.keys())
|
|
assert_('y' in z.keys())
|
|
|
|
for f, a in z.items():
|
|
assert_(f in ['x', 'y'])
|
|
assert_equal(a.shape, (3, 3))
|
|
|
|
assert_(len(z.items()) == 2)
|
|
|
|
for f in z:
|
|
assert_(f in ['x', 'y'])
|
|
|
|
assert_('x' in z.keys())
|
|
|
|
|
|
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
|
|
def test_load_refcount():
|
|
# Check that objects returned by np.load are directly freed based on
|
|
# their refcount, rather than needing the gc to collect them.
|
|
|
|
f = BytesIO()
|
|
np.savez(f, [1, 2, 3])
|
|
f.seek(0)
|
|
|
|
with assert_no_gc_cycles():
|
|
np.load(f)
|
|
|
|
f.seek(0)
|
|
dt = [("a", 'u1', 2), ("b", 'u1', 2)]
|
|
with assert_no_gc_cycles():
|
|
x = np.loadtxt(TextIO("0 1 2 3"), dtype=dt)
|
|
assert_equal(x, np.array([((0, 1), (2, 3))], dtype=dt))
|