Intelegentny_Pszczelarz/.venv/Lib/site-packages/scipy/optimize/_root.py
2023-06-19 00:49:18 +02:00

718 lines
28 KiB
Python

"""
Unified interfaces to root finding algorithms.
Functions
---------
- root : find a root of a vector function.
"""
__all__ = ['root']
import numpy as np
ROOT_METHODS = ['hybr', 'lm', 'broyden1', 'broyden2', 'anderson',
'linearmixing', 'diagbroyden', 'excitingmixing', 'krylov',
'df-sane']
from warnings import warn
from ._optimize import MemoizeJac, OptimizeResult, _check_unknown_options
from ._minpack_py import _root_hybr, leastsq
from ._spectral import _root_df_sane
from . import _nonlin as nonlin
def root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None,
options=None):
r"""
Find a root of a vector function.
Parameters
----------
fun : callable
A vector function to find a root of.
x0 : ndarray
Initial guess.
args : tuple, optional
Extra arguments passed to the objective function and its Jacobian.
method : str, optional
Type of solver. Should be one of
- 'hybr' :ref:`(see here) <optimize.root-hybr>`
- 'lm' :ref:`(see here) <optimize.root-lm>`
- 'broyden1' :ref:`(see here) <optimize.root-broyden1>`
- 'broyden2' :ref:`(see here) <optimize.root-broyden2>`
- 'anderson' :ref:`(see here) <optimize.root-anderson>`
- 'linearmixing' :ref:`(see here) <optimize.root-linearmixing>`
- 'diagbroyden' :ref:`(see here) <optimize.root-diagbroyden>`
- 'excitingmixing' :ref:`(see here) <optimize.root-excitingmixing>`
- 'krylov' :ref:`(see here) <optimize.root-krylov>`
- 'df-sane' :ref:`(see here) <optimize.root-dfsane>`
jac : bool or callable, optional
If `jac` is a Boolean and is True, `fun` is assumed to return the
value of Jacobian along with the objective function. If False, the
Jacobian will be estimated numerically.
`jac` can also be a callable returning the Jacobian of `fun`. In
this case, it must accept the same arguments as `fun`.
tol : float, optional
Tolerance for termination. For detailed control, use solver-specific
options.
callback : function, optional
Optional callback function. It is called on every iteration as
``callback(x, f)`` where `x` is the current solution and `f`
the corresponding residual. For all methods but 'hybr' and 'lm'.
options : dict, optional
A dictionary of solver options. E.g., `xtol` or `maxiter`, see
:obj:`show_options()` for details.
Returns
-------
sol : OptimizeResult
The solution represented as a ``OptimizeResult`` object.
Important attributes are: ``x`` the solution array, ``success`` a
Boolean flag indicating if the algorithm exited successfully and
``message`` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes.
See also
--------
show_options : Additional options accepted by the solvers
Notes
-----
This section describes the available solvers that can be selected by the
'method' parameter. The default method is *hybr*.
Method *hybr* uses a modification of the Powell hybrid method as
implemented in MINPACK [1]_.
Method *lm* solves the system of nonlinear equations in a least squares
sense using a modification of the Levenberg-Marquardt algorithm as
implemented in MINPACK [1]_.
Method *df-sane* is a derivative-free spectral method. [3]_
Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
*diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
with backtracking or full line searches [2]_. Each method corresponds
to a particular Jacobian approximations.
- Method *broyden1* uses Broyden's first Jacobian approximation, it is
known as Broyden's good method.
- Method *broyden2* uses Broyden's second Jacobian approximation, it
is known as Broyden's bad method.
- Method *anderson* uses (extended) Anderson mixing.
- Method *Krylov* uses Krylov approximation for inverse Jacobian. It
is suitable for large-scale problem.
- Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
- Method *linearmixing* uses a scalar Jacobian approximation.
- Method *excitingmixing* uses a tuned diagonal Jacobian
approximation.
.. warning::
The algorithms implemented for methods *diagbroyden*,
*linearmixing* and *excitingmixing* may be useful for specific
problems, but whether they will work may depend strongly on the
problem.
.. versionadded:: 0.11.0
References
----------
.. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
1980. User Guide for MINPACK-1.
.. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
Equations. Society for Industrial and Applied Mathematics.
<https://archive.siam.org/books/kelley/fr16/>
.. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).
Examples
--------
The following functions define a system of nonlinear equations and its
jacobian.
>>> import numpy as np
>>> def fun(x):
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
... 0.5 * (x[1] - x[0])**3 + x[1]]
>>> def jac(x):
... return np.array([[1 + 1.5 * (x[0] - x[1])**2,
... -1.5 * (x[0] - x[1])**2],
... [-1.5 * (x[1] - x[0])**2,
... 1 + 1.5 * (x[1] - x[0])**2]])
A solution can be obtained as follows.
>>> from scipy import optimize
>>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
>>> sol.x
array([ 0.8411639, 0.1588361])
**Large problem**
Suppose that we needed to solve the following integrodifferential
equation on the square :math:`[0,1]\times[0,1]`:
.. math::
\nabla^2 P = 10 \left(\int_0^1\int_0^1\cosh(P)\,dx\,dy\right)^2
with :math:`P(x,1) = 1` and :math:`P=0` elsewhere on the boundary of
the square.
The solution can be found using the ``method='krylov'`` solver:
>>> from scipy import optimize
>>> # parameters
>>> nx, ny = 75, 75
>>> hx, hy = 1./(nx-1), 1./(ny-1)
>>> P_left, P_right = 0, 0
>>> P_top, P_bottom = 1, 0
>>> def residual(P):
... d2x = np.zeros_like(P)
... d2y = np.zeros_like(P)
...
... d2x[1:-1] = (P[2:] - 2*P[1:-1] + P[:-2]) / hx/hx
... d2x[0] = (P[1] - 2*P[0] + P_left)/hx/hx
... d2x[-1] = (P_right - 2*P[-1] + P[-2])/hx/hx
...
... d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
... d2y[:,0] = (P[:,1] - 2*P[:,0] + P_bottom)/hy/hy
... d2y[:,-1] = (P_top - 2*P[:,-1] + P[:,-2])/hy/hy
...
... return d2x + d2y - 10*np.cosh(P).mean()**2
>>> guess = np.zeros((nx, ny), float)
>>> sol = optimize.root(residual, guess, method='krylov')
>>> print('Residual: %g' % abs(residual(sol.x)).max())
Residual: 5.7972e-06 # may vary
>>> import matplotlib.pyplot as plt
>>> x, y = np.mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
>>> plt.pcolormesh(x, y, sol.x, shading='gouraud')
>>> plt.colorbar()
>>> plt.show()
"""
if not isinstance(args, tuple):
args = (args,)
meth = method.lower()
if options is None:
options = {}
if callback is not None and meth in ('hybr', 'lm'):
warn('Method %s does not accept callback.' % method,
RuntimeWarning)
# fun also returns the Jacobian
if not callable(jac) and meth in ('hybr', 'lm'):
if bool(jac):
fun = MemoizeJac(fun)
jac = fun.derivative
else:
jac = None
# set default tolerances
if tol is not None:
options = dict(options)
if meth in ('hybr', 'lm'):
options.setdefault('xtol', tol)
elif meth in ('df-sane',):
options.setdefault('ftol', tol)
elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
'diagbroyden', 'excitingmixing', 'krylov'):
options.setdefault('xtol', tol)
options.setdefault('xatol', np.inf)
options.setdefault('ftol', np.inf)
options.setdefault('fatol', np.inf)
if meth == 'hybr':
sol = _root_hybr(fun, x0, args=args, jac=jac, **options)
elif meth == 'lm':
sol = _root_leastsq(fun, x0, args=args, jac=jac, **options)
elif meth == 'df-sane':
_warn_jac_unused(jac, method)
sol = _root_df_sane(fun, x0, args=args, callback=callback,
**options)
elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
'diagbroyden', 'excitingmixing', 'krylov'):
_warn_jac_unused(jac, method)
sol = _root_nonlin_solve(fun, x0, args=args, jac=jac,
_method=meth, _callback=callback,
**options)
else:
raise ValueError('Unknown solver %s' % method)
return sol
def _warn_jac_unused(jac, method):
if jac is not None:
warn('Method %s does not use the jacobian (jac).' % (method,),
RuntimeWarning)
def _root_leastsq(fun, x0, args=(), jac=None,
col_deriv=0, xtol=1.49012e-08, ftol=1.49012e-08,
gtol=0.0, maxiter=0, eps=0.0, factor=100, diag=None,
**unknown_options):
"""
Solve for least squares with Levenberg-Marquardt
Options
-------
col_deriv : bool
non-zero to specify that the Jacobian function computes derivatives
down the columns (faster, because there is no transpose operation).
ftol : float
Relative error desired in the sum of squares.
xtol : float
Relative error desired in the approximate solution.
gtol : float
Orthogonality desired between the function vector and the columns
of the Jacobian.
maxiter : int
The maximum number of calls to the function. If zero, then
100*(N+1) is the maximum where N is the number of elements in x0.
epsfcn : float
A suitable step length for the forward-difference approximation of
the Jacobian (for Dfun=None). If epsfcn is less than the machine
precision, it is assumed that the relative errors in the functions
are of the order of the machine precision.
factor : float
A parameter determining the initial step bound
(``factor * || diag * x||``). Should be in interval ``(0.1, 100)``.
diag : sequence
N positive entries that serve as a scale factors for the variables.
"""
_check_unknown_options(unknown_options)
x, cov_x, info, msg, ier = leastsq(fun, x0, args=args, Dfun=jac,
full_output=True,
col_deriv=col_deriv, xtol=xtol,
ftol=ftol, gtol=gtol,
maxfev=maxiter, epsfcn=eps,
factor=factor, diag=diag)
sol = OptimizeResult(x=x, message=msg, status=ier,
success=ier in (1, 2, 3, 4), cov_x=cov_x,
fun=info.pop('fvec'))
sol.update(info)
return sol
def _root_nonlin_solve(fun, x0, args=(), jac=None,
_callback=None, _method=None,
nit=None, disp=False, maxiter=None,
ftol=None, fatol=None, xtol=None, xatol=None,
tol_norm=None, line_search='armijo', jac_options=None,
**unknown_options):
_check_unknown_options(unknown_options)
f_tol = fatol
f_rtol = ftol
x_tol = xatol
x_rtol = xtol
verbose = disp
if jac_options is None:
jac_options = dict()
jacobian = {'broyden1': nonlin.BroydenFirst,
'broyden2': nonlin.BroydenSecond,
'anderson': nonlin.Anderson,
'linearmixing': nonlin.LinearMixing,
'diagbroyden': nonlin.DiagBroyden,
'excitingmixing': nonlin.ExcitingMixing,
'krylov': nonlin.KrylovJacobian
}[_method]
if args:
if jac:
def f(x):
return fun(x, *args)[0]
else:
def f(x):
return fun(x, *args)
else:
f = fun
x, info = nonlin.nonlin_solve(f, x0, jacobian=jacobian(**jac_options),
iter=nit, verbose=verbose,
maxiter=maxiter, f_tol=f_tol,
f_rtol=f_rtol, x_tol=x_tol,
x_rtol=x_rtol, tol_norm=tol_norm,
line_search=line_search,
callback=_callback, full_output=True,
raise_exception=False)
sol = OptimizeResult(x=x)
sol.update(info)
return sol
def _root_broyden1_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).
reduction_method : str or tuple, optional
Method used in ensuring that the rank of the Broyden
matrix stays low. Can either be a string giving the
name of the method, or a tuple of the form ``(method,
param1, param2, ...)`` that gives the name of the
method and values for additional parameters.
Methods available:
- ``restart``
Drop all matrix columns. Has no
extra parameters.
- ``simple``
Drop oldest matrix column. Has no
extra parameters.
- ``svd``
Keep only the most significant SVD
components.
Extra parameters:
- ``to_retain``
Number of SVD components to
retain when rank reduction is done.
Default is ``max_rank - 2``.
max_rank : int, optional
Maximum rank for the Broyden matrix.
Default is infinity (i.e., no rank reduction).
Examples
--------
>>> def func(x):
... return np.cos(x) + x[::-1] - [1, 2, 3, 4]
...
>>> from scipy import optimize
>>> res = optimize.root(func, [1, 1, 1, 1], method='broyden1', tol=1e-14)
>>> x = res.x
>>> x
array([4.04674914, 3.91158389, 2.71791677, 1.61756251])
>>> np.cos(x) + x[::-1]
array([1., 2., 3., 4.])
"""
pass
def _root_broyden2_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).
reduction_method : str or tuple, optional
Method used in ensuring that the rank of the Broyden
matrix stays low. Can either be a string giving the
name of the method, or a tuple of the form ``(method,
param1, param2, ...)`` that gives the name of the
method and values for additional parameters.
Methods available:
- ``restart``
Drop all matrix columns. Has no
extra parameters.
- ``simple``
Drop oldest matrix column. Has no
extra parameters.
- ``svd``
Keep only the most significant SVD
components.
Extra parameters:
- ``to_retain``
Number of SVD components to
retain when rank reduction is done.
Default is ``max_rank - 2``.
max_rank : int, optional
Maximum rank for the Broyden matrix.
Default is infinity (i.e., no rank reduction).
"""
pass
def _root_anderson_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).
M : float, optional
Number of previous vectors to retain. Defaults to 5.
w0 : float, optional
Regularization parameter for numerical stability.
Compared to unity, good values of the order of 0.01.
"""
pass
def _root_linearmixing_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, ``NoConvergence`` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
initial guess for the jacobian is (-1/alpha).
"""
pass
def _root_diagbroyden_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
initial guess for the jacobian is (-1/alpha).
"""
pass
def _root_excitingmixing_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
Initial Jacobian approximation is (-1/alpha).
alphamax : float, optional
The entries of the diagonal Jacobian are kept in the range
``[alpha, alphamax]``.
"""
pass
def _root_krylov_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
rdiff : float, optional
Relative step size to use in numerical differentiation.
method : str or callable, optional
Krylov method to use to approximate the Jacobian. Can be a string,
or a function implementing the same interface as the iterative
solvers in `scipy.sparse.linalg`. If a string, needs to be one of:
``'lgmres'``, ``'gmres'``, ``'bicgstab'``, ``'cgs'``, ``'minres'``,
``'tfqmr'``.
The default is `scipy.sparse.linalg.lgmres`.
inner_M : LinearOperator or InverseJacobian
Preconditioner for the inner Krylov iteration.
Note that you can use also inverse Jacobians as (adaptive)
preconditioners. For example,
>>> jac = BroydenFirst()
>>> kjac = KrylovJacobian(inner_M=jac.inverse).
If the preconditioner has a method named 'update', it will
be called as ``update(x, f)`` after each nonlinear step,
with ``x`` giving the current point, and ``f`` the current
function value.
inner_tol, inner_maxiter, ...
Parameters to pass on to the "inner" Krylov solver.
See `scipy.sparse.linalg.gmres` for details.
outer_k : int, optional
Size of the subspace kept across LGMRES nonlinear
iterations.
See `scipy.sparse.linalg.lgmres` for details.
"""
pass