Intelegentny_Pszczelarz/.venv/Lib/site-packages/scipy/stats/tests/test_axis_nan_policy.py
2023-06-19 00:49:18 +02:00

1045 lines
43 KiB
Python

# Many scipy.stats functions support `axis` and `nan_policy` parameters.
# When the two are combined, it can be tricky to get all the behavior just
# right. This file contains a suite of common tests for scipy.stats functions
# that support `axis` and `nan_policy` and additional tests for some associated
# functions in stats._util.
from itertools import product, combinations_with_replacement, permutations
import re
import pickle
import pytest
import numpy as np
from numpy.testing import assert_allclose, assert_equal, suppress_warnings
from scipy import stats
from scipy.stats._axis_nan_policy import _masked_arrays_2_sentinel_arrays
def unpack_ttest_result(res):
low, high = res.confidence_interval()
return (res.statistic, res.pvalue, res.df, res._standard_error,
res._estimate, low, high)
axis_nan_policy_cases = [
# function, args, kwds, number of samples, number of outputs,
# ... paired, unpacker function
# args, kwds typically aren't needed; just showing that they work
(stats.kruskal, tuple(), dict(), 3, 2, False, None), # 4 samples is slow
(stats.ranksums, ('less',), dict(), 2, 2, False, None),
(stats.mannwhitneyu, tuple(), {'method': 'asymptotic'}, 2, 2, False, None),
(stats.wilcoxon, ('pratt',), {'mode': 'auto'}, 2, 2, True,
lambda res: (res.statistic, res.pvalue)),
(stats.wilcoxon, tuple(), dict(), 1, 2, True,
lambda res: (res.statistic, res.pvalue)),
(stats.wilcoxon, tuple(), {'mode': 'approx'}, 1, 3, True,
lambda res: (res.statistic, res.pvalue, res.zstatistic)),
(stats.gmean, tuple(), dict(), 1, 1, False, lambda x: (x,)),
(stats.hmean, tuple(), dict(), 1, 1, False, lambda x: (x,)),
(stats.pmean, (1.42,), dict(), 1, 1, False, lambda x: (x,)),
(stats.kurtosis, tuple(), dict(), 1, 1, False, lambda x: (x,)),
(stats.skew, tuple(), dict(), 1, 1, False, lambda x: (x,)),
(stats.kstat, tuple(), dict(), 1, 1, False, lambda x: (x,)),
(stats.kstatvar, tuple(), dict(), 1, 1, False, lambda x: (x,)),
(stats.moment, tuple(), dict(), 1, 1, False, lambda x: (x,)),
(stats.moment, tuple(), dict(moment=[1, 2]), 1, 2, False, None),
(stats.jarque_bera, tuple(), dict(), 1, 2, False, None),
(stats.ttest_1samp, (np.array([0]),), dict(), 1, 7, False,
unpack_ttest_result),
(stats.ttest_rel, tuple(), dict(), 2, 7, True, unpack_ttest_result)
]
# If the message is one of those expected, put nans in
# appropriate places of `statistics` and `pvalues`
too_small_messages = {"The input contains nan", # for nan_policy="raise"
"Degrees of freedom <= 0 for slice",
"x and y should have at least 5 elements",
"Data must be at least length 3",
"The sample must contain at least two",
"x and y must contain at least two",
"division by zero",
"Mean of empty slice",
"Data passed to ks_2samp must not be empty",
"Not enough test observations",
"Not enough other observations",
"At least one observation is required",
"zero-size array to reduction operation maximum",
"`x` and `y` must be of nonzero size.",
"The exact distribution of the Wilcoxon test",
"Data input must not be empty"}
# If the message is one of these, results of the function may be inaccurate,
# but NaNs are not to be placed
inaccuracy_messages = {"Precision loss occurred in moment calculation",
"Sample size too small for normal approximation."}
def _mixed_data_generator(n_samples, n_repetitions, axis, rng,
paired=False):
# generate random samples to check the response of hypothesis tests to
# samples with different (but broadcastable) shapes and various
# nan patterns (e.g. all nans, some nans, no nans) along axis-slices
data = []
for i in range(n_samples):
n_patterns = 6 # number of distinct nan patterns
n_obs = 20 if paired else 20 + i # observations per axis-slice
x = np.ones((n_repetitions, n_patterns, n_obs)) * np.nan
for j in range(n_repetitions):
samples = x[j, :, :]
# case 0: axis-slice with all nans (0 reals)
# cases 1-3: axis-slice with 1-3 reals (the rest nans)
# case 4: axis-slice with mostly (all but two) reals
# case 5: axis slice with all reals
for k, n_reals in enumerate([0, 1, 2, 3, n_obs-2, n_obs]):
# for cases 1-3, need paired nansw to be in the same place
indices = rng.permutation(n_obs)[:n_reals]
samples[k, indices] = rng.random(size=n_reals)
# permute the axis-slices just to show that order doesn't matter
samples[:] = rng.permutation(samples, axis=0)
# For multi-sample tests, we want to test broadcasting and check
# that nan policy works correctly for each nan pattern for each input.
# This takes care of both simultaneosly.
new_shape = [n_repetitions] + [1]*n_samples + [n_obs]
new_shape[1 + i] = 6
x = x.reshape(new_shape)
x = np.moveaxis(x, -1, axis)
data.append(x)
return data
def _homogeneous_data_generator(n_samples, n_repetitions, axis, rng,
paired=False, all_nans=True):
# generate random samples to check the response of hypothesis tests to
# samples with different (but broadcastable) shapes and homogeneous
# data (all nans or all finite)
data = []
for i in range(n_samples):
n_obs = 20 if paired else 20 + i # observations per axis-slice
shape = [n_repetitions] + [1]*n_samples + [n_obs]
shape[1 + i] = 2
x = np.ones(shape) * np.nan if all_nans else rng.random(shape)
x = np.moveaxis(x, -1, axis)
data.append(x)
return data
def nan_policy_1d(hypotest, data1d, unpacker, *args, n_outputs=2,
nan_policy='raise', paired=False, _no_deco=True, **kwds):
# Reference implementation for how `nan_policy` should work for 1d samples
if nan_policy == 'raise':
for sample in data1d:
if np.any(np.isnan(sample)):
raise ValueError("The input contains nan values")
elif nan_policy == 'propagate':
# For all hypothesis tests tested, returning nans is the right thing.
# But many hypothesis tests don't propagate correctly (e.g. they treat
# np.nan the same as np.inf, which doesn't make sense when ranks are
# involved) so override that behavior here.
for sample in data1d:
if np.any(np.isnan(sample)):
return np.full(n_outputs, np.nan)
elif nan_policy == 'omit':
# manually omit nans (or pairs in which at least one element is nan)
if not paired:
data1d = [sample[~np.isnan(sample)] for sample in data1d]
else:
nan_mask = np.isnan(data1d[0])
for sample in data1d[1:]:
nan_mask = np.logical_or(nan_mask, np.isnan(sample))
data1d = [sample[~nan_mask] for sample in data1d]
return unpacker(hypotest(*data1d, *args, _no_deco=_no_deco, **kwds))
@pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
"paired", "unpacker"), axis_nan_policy_cases)
@pytest.mark.parametrize(("nan_policy"), ("propagate", "omit", "raise"))
@pytest.mark.parametrize(("axis"), (1,))
@pytest.mark.parametrize(("data_generator"), ("mixed",))
def test_axis_nan_policy_fast(hypotest, args, kwds, n_samples, n_outputs,
paired, unpacker, nan_policy, axis,
data_generator):
_axis_nan_policy_test(hypotest, args, kwds, n_samples, n_outputs, paired,
unpacker, nan_policy, axis, data_generator)
@pytest.mark.slow
@pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
"paired", "unpacker"), axis_nan_policy_cases)
@pytest.mark.parametrize(("nan_policy"), ("propagate", "omit", "raise"))
@pytest.mark.parametrize(("axis"), range(-3, 3))
@pytest.mark.parametrize(("data_generator"),
("all_nans", "all_finite", "mixed"))
def test_axis_nan_policy_full(hypotest, args, kwds, n_samples, n_outputs,
paired, unpacker, nan_policy, axis,
data_generator):
_axis_nan_policy_test(hypotest, args, kwds, n_samples, n_outputs, paired,
unpacker, nan_policy, axis, data_generator)
def _axis_nan_policy_test(hypotest, args, kwds, n_samples, n_outputs, paired,
unpacker, nan_policy, axis, data_generator):
# Tests the 1D and vectorized behavior of hypothesis tests against a
# reference implementation (nan_policy_1d with np.ndenumerate)
# Some hypothesis tests return a non-iterable that needs an `unpacker` to
# extract the statistic and p-value. For those that don't:
if not unpacker:
def unpacker(res):
return res
rng = np.random.default_rng(0)
# Generate multi-dimensional test data with all important combinations
# of patterns of nans along `axis`
n_repetitions = 3 # number of repetitions of each pattern
data_gen_kwds = {'n_samples': n_samples, 'n_repetitions': n_repetitions,
'axis': axis, 'rng': rng, 'paired': paired}
if data_generator == 'mixed':
inherent_size = 6 # number of distinct types of patterns
data = _mixed_data_generator(**data_gen_kwds)
elif data_generator == 'all_nans':
inherent_size = 2 # hard-coded in _homogeneous_data_generator
data_gen_kwds['all_nans'] = True
data = _homogeneous_data_generator(**data_gen_kwds)
elif data_generator == 'all_finite':
inherent_size = 2 # hard-coded in _homogeneous_data_generator
data_gen_kwds['all_nans'] = False
data = _homogeneous_data_generator(**data_gen_kwds)
output_shape = [n_repetitions] + [inherent_size]*n_samples
# To generate reference behavior to compare against, loop over the axis-
# slices in data. Make indexing easier by moving `axis` to the end and
# broadcasting all samples to the same shape.
data_b = [np.moveaxis(sample, axis, -1) for sample in data]
data_b = [np.broadcast_to(sample, output_shape + [sample.shape[-1]])
for sample in data_b]
statistics = np.zeros(output_shape)
pvalues = np.zeros(output_shape)
for i, _ in np.ndenumerate(statistics):
data1d = [sample[i] for sample in data_b]
with np.errstate(divide='ignore', invalid='ignore'):
try:
res1d = nan_policy_1d(hypotest, data1d, unpacker, *args,
n_outputs=n_outputs,
nan_policy=nan_policy,
paired=paired, _no_deco=True, **kwds)
# Eventually we'll check the results of a single, vectorized
# call of `hypotest` against the arrays `statistics` and
# `pvalues` populated using the reference `nan_policy_1d`.
# But while we're at it, check the results of a 1D call to
# `hypotest` against the reference `nan_policy_1d`.
res1db = unpacker(hypotest(*data1d, *args,
nan_policy=nan_policy, **kwds))
assert_equal(res1db[0], res1d[0])
if len(res1db) == 2:
assert_equal(res1db[1], res1d[1])
# When there is not enough data in 1D samples, many existing
# hypothesis tests raise errors instead of returning nans .
# For vectorized calls, we put nans in the corresponding elements
# of the output.
except (RuntimeWarning, UserWarning, ValueError,
ZeroDivisionError) as e:
# whatever it is, make sure same error is raised by both
# `nan_policy_1d` and `hypotest`
with pytest.raises(type(e), match=re.escape(str(e))):
nan_policy_1d(hypotest, data1d, unpacker, *args,
n_outputs=n_outputs, nan_policy=nan_policy,
paired=paired, _no_deco=True, **kwds)
with pytest.raises(type(e), match=re.escape(str(e))):
hypotest(*data1d, *args, nan_policy=nan_policy, **kwds)
if any([str(e).startswith(message)
for message in too_small_messages]):
res1d = np.full(n_outputs, np.nan)
elif any([str(e).startswith(message)
for message in inaccuracy_messages]):
with suppress_warnings() as sup:
sup.filter(RuntimeWarning)
sup.filter(UserWarning)
res1d = nan_policy_1d(hypotest, data1d, unpacker,
*args, n_outputs=n_outputs,
nan_policy=nan_policy,
paired=paired, _no_deco=True,
**kwds)
else:
raise e
statistics[i] = res1d[0]
if len(res1d) == 2:
pvalues[i] = res1d[1]
# Perform a vectorized call to the hypothesis test.
# If `nan_policy == 'raise'`, check that it raises the appropriate error.
# If not, compare against the output against `statistics` and `pvalues`
if nan_policy == 'raise' and not data_generator == "all_finite":
message = 'The input contains nan values'
with pytest.raises(ValueError, match=message):
hypotest(*data, axis=axis, nan_policy=nan_policy, *args, **kwds)
else:
with suppress_warnings() as sup, \
np.errstate(divide='ignore', invalid='ignore'):
sup.filter(RuntimeWarning, "Precision loss occurred in moment")
sup.filter(UserWarning, "Sample size too small for normal "
"approximation.")
res = unpacker(hypotest(*data, axis=axis, nan_policy=nan_policy,
*args, **kwds))
assert_allclose(res[0], statistics, rtol=1e-15)
assert_equal(res[0].dtype, statistics.dtype)
if len(res) == 2:
assert_allclose(res[1], pvalues, rtol=1e-15)
assert_equal(res[1].dtype, pvalues.dtype)
@pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
"paired", "unpacker"), axis_nan_policy_cases)
@pytest.mark.parametrize(("nan_policy"), ("propagate", "omit", "raise"))
@pytest.mark.parametrize(("data_generator"),
("all_nans", "all_finite", "mixed", "empty"))
def test_axis_nan_policy_axis_is_None(hypotest, args, kwds, n_samples,
n_outputs, paired, unpacker, nan_policy,
data_generator):
# check for correct behavior when `axis=None`
if not unpacker:
def unpacker(res):
return res
rng = np.random.default_rng(0)
if data_generator == "empty":
data = [rng.random((2, 0)) for i in range(n_samples)]
else:
data = [rng.random((2, 20)) for i in range(n_samples)]
if data_generator == "mixed":
masks = [rng.random((2, 20)) > 0.9 for i in range(n_samples)]
for sample, mask in zip(data, masks):
sample[mask] = np.nan
elif data_generator == "all_nans":
data = [sample * np.nan for sample in data]
data_raveled = [sample.ravel() for sample in data]
if nan_policy == 'raise' and data_generator not in {"all_finite", "empty"}:
message = 'The input contains nan values'
# check for correct behavior whether or not data is 1d to begin with
with pytest.raises(ValueError, match=message):
hypotest(*data, axis=None, nan_policy=nan_policy,
*args, **kwds)
with pytest.raises(ValueError, match=message):
hypotest(*data_raveled, axis=None, nan_policy=nan_policy,
*args, **kwds)
else:
# behavior of reference implementation with 1d input, hypotest with 1d
# input, and hypotest with Nd input should match, whether that means
# that outputs are equal or they raise the same exception
ea_str, eb_str, ec_str = None, None, None
with np.errstate(divide='ignore', invalid='ignore'):
try:
res1da = nan_policy_1d(hypotest, data_raveled, unpacker, *args,
n_outputs=n_outputs,
nan_policy=nan_policy, paired=paired,
_no_deco=True, **kwds)
except (RuntimeWarning, ValueError, ZeroDivisionError) as ea:
ea_str = str(ea)
try:
res1db = unpacker(hypotest(*data_raveled, *args,
nan_policy=nan_policy, **kwds))
except (RuntimeWarning, ValueError, ZeroDivisionError) as eb:
eb_str = str(eb)
try:
res1dc = unpacker(hypotest(*data, *args, axis=None,
nan_policy=nan_policy, **kwds))
except (RuntimeWarning, ValueError, ZeroDivisionError) as ec:
ec_str = str(ec)
if ea_str or eb_str or ec_str:
assert any([str(ea_str).startswith(message)
for message in too_small_messages])
assert ea_str == eb_str == ec_str
else:
assert_equal(res1db, res1da)
assert_equal(res1dc, res1da)
# Test keepdims for:
# - single-output and multi-output functions (gmean and mannwhitneyu)
# - Axis negative, positive, None, and tuple
# - 1D with no NaNs
# - 1D with NaN propagation
# - Zero-sized output
@pytest.mark.parametrize("nan_policy", ("omit", "propagate"))
@pytest.mark.parametrize(
("hypotest", "args", "kwds", "n_samples", "unpacker"),
((stats.gmean, tuple(), dict(), 1, lambda x: (x,)),
(stats.mannwhitneyu, tuple(), {'method': 'asymptotic'}, 2, None))
)
@pytest.mark.parametrize(
("sample_shape", "axis_cases"),
(((2, 3, 3, 4), (None, 0, -1, (0, 2), (1, -1), (3, 1, 2, 0))),
((10, ), (0, -1)),
((20, 0), (0, 1)))
)
def test_keepdims(hypotest, args, kwds, n_samples, unpacker,
sample_shape, axis_cases, nan_policy):
# test if keepdims parameter works correctly
if not unpacker:
def unpacker(res):
return res
rng = np.random.default_rng(0)
data = [rng.random(sample_shape) for _ in range(n_samples)]
nan_data = [sample.copy() for sample in data]
nan_mask = [rng.random(sample_shape) < 0.2 for _ in range(n_samples)]
for sample, mask in zip(nan_data, nan_mask):
sample[mask] = np.nan
for axis in axis_cases:
expected_shape = list(sample_shape)
if axis is None:
expected_shape = np.ones(len(sample_shape))
else:
if isinstance(axis, int):
expected_shape[axis] = 1
else:
for ax in axis:
expected_shape[ax] = 1
expected_shape = tuple(expected_shape)
res = unpacker(hypotest(*data, *args, axis=axis, keepdims=True,
**kwds))
res_base = unpacker(hypotest(*data, *args, axis=axis, keepdims=False,
**kwds))
nan_res = unpacker(hypotest(*nan_data, *args, axis=axis,
keepdims=True, nan_policy=nan_policy,
**kwds))
nan_res_base = unpacker(hypotest(*nan_data, *args, axis=axis,
keepdims=False,
nan_policy=nan_policy, **kwds))
for r, r_base, rn, rn_base in zip(res, res_base, nan_res,
nan_res_base):
assert r.shape == expected_shape
r = np.squeeze(r, axis=axis)
assert_equal(r, r_base)
assert rn.shape == expected_shape
rn = np.squeeze(rn, axis=axis)
assert_equal(rn, rn_base)
@pytest.mark.parametrize(("fun", "nsamp"),
[(stats.kstat, 1),
(stats.kstatvar, 1)])
def test_hypotest_back_compat_no_axis(fun, nsamp):
m, n = 8, 9
rng = np.random.default_rng(0)
x = rng.random((nsamp, m, n))
res = fun(*x)
res2 = fun(*x, _no_deco=True)
res3 = fun([xi.ravel() for xi in x])
assert_equal(res, res2)
assert_equal(res, res3)
@pytest.mark.parametrize(("axis"), (0, 1, 2))
def test_axis_nan_policy_decorated_positional_axis(axis):
# Test for correct behavior of function decorated with
# _axis_nan_policy_decorator whether `axis` is provided as positional or
# keyword argument
shape = (8, 9, 10)
rng = np.random.default_rng(0)
x = rng.random(shape)
y = rng.random(shape)
res1 = stats.mannwhitneyu(x, y, True, 'two-sided', axis)
res2 = stats.mannwhitneyu(x, y, True, 'two-sided', axis=axis)
assert_equal(res1, res2)
message = "mannwhitneyu() got multiple values for argument 'axis'"
with pytest.raises(TypeError, match=re.escape(message)):
stats.mannwhitneyu(x, y, True, 'two-sided', axis, axis=axis)
def test_axis_nan_policy_decorated_positional_args():
# Test for correct behavior of function decorated with
# _axis_nan_policy_decorator when function accepts *args
shape = (3, 8, 9, 10)
rng = np.random.default_rng(0)
x = rng.random(shape)
x[0, 0, 0, 0] = np.nan
stats.kruskal(*x)
message = "kruskal() got an unexpected keyword argument 'samples'"
with pytest.raises(TypeError, match=re.escape(message)):
stats.kruskal(samples=x)
with pytest.raises(TypeError, match=re.escape(message)):
stats.kruskal(*x, samples=x)
def test_axis_nan_policy_decorated_keyword_samples():
# Test for correct behavior of function decorated with
# _axis_nan_policy_decorator whether samples are provided as positional or
# keyword arguments
shape = (2, 8, 9, 10)
rng = np.random.default_rng(0)
x = rng.random(shape)
x[0, 0, 0, 0] = np.nan
res1 = stats.mannwhitneyu(*x)
res2 = stats.mannwhitneyu(x=x[0], y=x[1])
assert_equal(res1, res2)
message = "mannwhitneyu() got multiple values for argument"
with pytest.raises(TypeError, match=re.escape(message)):
stats.mannwhitneyu(*x, x=x[0], y=x[1])
@pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
"paired", "unpacker"), axis_nan_policy_cases)
def test_axis_nan_policy_decorated_pickled(hypotest, args, kwds, n_samples,
n_outputs, paired, unpacker):
rng = np.random.default_rng(0)
# Some hypothesis tests return a non-iterable that needs an `unpacker` to
# extract the statistic and p-value. For those that don't:
if not unpacker:
def unpacker(res):
return res
data = rng.uniform(size=(n_samples, 2, 30))
pickled_hypotest = pickle.dumps(hypotest)
unpickled_hypotest = pickle.loads(pickled_hypotest)
res1 = unpacker(hypotest(*data, *args, axis=-1, **kwds))
res2 = unpacker(unpickled_hypotest(*data, *args, axis=-1, **kwds))
assert_allclose(res1, res2, rtol=1e-12)
def test_check_empty_inputs():
# Test that _check_empty_inputs is doing its job, at least for single-
# sample inputs. (Multi-sample functionality is tested below.)
# If the input sample is not empty, it should return None.
# If the input sample is empty, it should return an array of NaNs or an
# empty array of appropriate shape. np.mean is used as a reference for the
# output because, like the statistics calculated by these functions,
# it works along and "consumes" `axis` but preserves the other axes.
for i in range(5):
for combo in combinations_with_replacement([0, 1, 2], i):
for axis in range(len(combo)):
samples = (np.zeros(combo),)
output = stats._axis_nan_policy._check_empty_inputs(samples,
axis)
if output is not None:
with np.testing.suppress_warnings() as sup:
sup.filter(RuntimeWarning, "Mean of empty slice.")
sup.filter(RuntimeWarning, "invalid value encountered")
reference = samples[0].mean(axis=axis)
np.testing.assert_equal(output, reference)
def _check_arrays_broadcastable(arrays, axis):
# https://numpy.org/doc/stable/user/basics.broadcasting.html
# "When operating on two arrays, NumPy compares their shapes element-wise.
# It starts with the trailing (i.e. rightmost) dimensions and works its
# way left.
# Two dimensions are compatible when
# 1. they are equal, or
# 2. one of them is 1
# ...
# Arrays do not need to have the same number of dimensions."
# (Clarification: if the arrays are compatible according to the criteria
# above and an array runs out of dimensions, it is still compatible.)
# Below, we follow the rules above except ignoring `axis`
n_dims = max([arr.ndim for arr in arrays])
if axis is not None:
# convert to negative axis
axis = (-n_dims + axis) if axis >= 0 else axis
for dim in range(1, n_dims+1): # we'll index from -1 to -n_dims, inclusive
if -dim == axis:
continue # ignore lengths along `axis`
dim_lengths = set()
for arr in arrays:
if dim <= arr.ndim and arr.shape[-dim] != 1:
dim_lengths.add(arr.shape[-dim])
if len(dim_lengths) > 1:
return False
return True
@pytest.mark.slow
@pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
"paired", "unpacker"), axis_nan_policy_cases)
def test_empty(hypotest, args, kwds, n_samples, n_outputs, paired, unpacker):
# test for correct output shape when at least one input is empty
if unpacker is None:
unpacker = lambda res: (res[0], res[1]) # noqa: E731
def small_data_generator(n_samples, n_dims):
def small_sample_generator(n_dims):
# return all possible "small" arrays in up to n_dim dimensions
for i in n_dims:
# "small" means with size along dimension either 0 or 1
for combo in combinations_with_replacement([0, 1, 2], i):
yield np.zeros(combo)
# yield all possible combinations of small samples
gens = [small_sample_generator(n_dims) for i in range(n_samples)]
for i in product(*gens):
yield i
n_dims = [2, 3]
for samples in small_data_generator(n_samples, n_dims):
# this test is only for arrays of zero size
if not any((sample.size == 0 for sample in samples)):
continue
max_axis = max((sample.ndim for sample in samples))
# need to test for all valid values of `axis` parameter, too
for axis in range(-max_axis, max_axis):
try:
# After broadcasting, all arrays are the same shape, so
# the shape of the output should be the same as a single-
# sample statistic. Use np.mean as a reference.
concat = stats._stats_py._broadcast_concatenate(samples, axis)
with np.testing.suppress_warnings() as sup:
sup.filter(RuntimeWarning, "Mean of empty slice.")
sup.filter(RuntimeWarning, "invalid value encountered")
expected = np.mean(concat, axis=axis) * np.nan
res = hypotest(*samples, *args, axis=axis, **kwds)
res = unpacker(res)
for i in range(n_outputs):
assert_equal(res[i], expected)
except ValueError:
# confirm that the arrays truly are not broadcastable
assert not _check_arrays_broadcastable(samples, axis)
# confirm that _both_ `_broadcast_concatenate` and `hypotest`
# produce this information.
message = "Array shapes are incompatible for broadcasting."
with pytest.raises(ValueError, match=message):
stats._stats_py._broadcast_concatenate(samples, axis)
with pytest.raises(ValueError, match=message):
hypotest(*samples, *args, axis=axis, **kwds)
def test_masked_array_2_sentinel_array():
# prepare arrays
np.random.seed(0)
A = np.random.rand(10, 11, 12)
B = np.random.rand(12)
mask = A < 0.5
A = np.ma.masked_array(A, mask)
# set arbitrary elements to special values
# (these values might have been considered for use as sentinel values)
max_float = np.finfo(np.float64).max
max_float2 = np.nextafter(max_float, -np.inf)
max_float3 = np.nextafter(max_float2, -np.inf)
A[3, 4, 1] = np.nan
A[4, 5, 2] = np.inf
A[5, 6, 3] = max_float
B[8] = np.nan
B[7] = np.inf
B[6] = max_float2
# convert masked A to array with sentinel value, don't modify B
out_arrays, sentinel = _masked_arrays_2_sentinel_arrays([A, B])
A_out, B_out = out_arrays
# check that good sentinel value was chosen (according to intended logic)
assert (sentinel != max_float) and (sentinel != max_float2)
assert sentinel == max_float3
# check that output arrays are as intended
A_reference = A.data
A_reference[A.mask] = sentinel
np.testing.assert_array_equal(A_out, A_reference)
assert B_out is B
def test_masked_dtype():
# When _masked_arrays_2_sentinel_arrays was first added, it always
# upcast the arrays to np.float64. After gh16662, check expected promotion
# and that the expected sentinel is found.
# these are important because the max of the promoted dtype is the first
# candidate to be the sentinel value
max16 = np.iinfo(np.int16).max
max128c = np.finfo(np.complex128).max
# a is a regular array, b has masked elements, and c has no masked elements
a = np.array([1, 2, max16], dtype=np.int16)
b = np.ma.array([1, 2, 1], dtype=np.int8, mask=[0, 1, 0])
c = np.ma.array([1, 2, 1], dtype=np.complex128, mask=[0, 0, 0])
# check integer masked -> sentinel conversion
out_arrays, sentinel = _masked_arrays_2_sentinel_arrays([a, b])
a_out, b_out = out_arrays
assert sentinel == max16-1 # not max16 because max16 was in the data
assert b_out.dtype == np.int16 # check expected promotion
assert_allclose(b_out, [b[0], sentinel, b[-1]]) # check sentinel placement
assert a_out is a # not a masked array, so left untouched
assert not isinstance(b_out, np.ma.MaskedArray) # b became regular array
# similarly with complex
out_arrays, sentinel = _masked_arrays_2_sentinel_arrays([b, c])
b_out, c_out = out_arrays
assert sentinel == max128c # max128c was not in the data
assert b_out.dtype == np.complex128 # b got promoted
assert_allclose(b_out, [b[0], sentinel, b[-1]]) # check sentinel placement
assert not isinstance(b_out, np.ma.MaskedArray) # b became regular array
assert not isinstance(c_out, np.ma.MaskedArray) # c became regular array
# Also, check edge case when a sentinel value cannot be found in the data
min8, max8 = np.iinfo(np.int8).min, np.iinfo(np.int8).max
a = np.arange(min8, max8+1, dtype=np.int8) # use all possible values
mask1 = np.zeros_like(a, dtype=bool)
mask0 = np.zeros_like(a, dtype=bool)
# a masked value can be used as the sentinel
mask1[1] = True
a1 = np.ma.array(a, mask=mask1)
out_arrays, sentinel = _masked_arrays_2_sentinel_arrays([a1])
assert sentinel == min8+1
# unless it's the smallest possible; skipped for simiplicity (see code)
mask0[0] = True
a0 = np.ma.array(a, mask=mask0)
message = "This function replaces masked elements with sentinel..."
with pytest.raises(ValueError, match=message):
_masked_arrays_2_sentinel_arrays([a0])
# test that dtype is preserved in functions
a = np.ma.array([1, 2, 3], mask=[0, 1, 0], dtype=np.float32)
assert stats.gmean(a).dtype == np.float32
def test_masked_stat_1d():
# basic test of _axis_nan_policy_factory with 1D masked sample
males = [19, 22, 16, 29, 24]
females = [20, 11, 17, 12]
res = stats.mannwhitneyu(males, females)
# same result when extra nan is omitted
females2 = [20, 11, 17, np.nan, 12]
res2 = stats.mannwhitneyu(males, females2, nan_policy='omit')
np.testing.assert_array_equal(res2, res)
# same result when extra element is masked
females3 = [20, 11, 17, 1000, 12]
mask3 = [False, False, False, True, False]
females3 = np.ma.masked_array(females3, mask=mask3)
res3 = stats.mannwhitneyu(males, females3)
np.testing.assert_array_equal(res3, res)
# same result when extra nan is omitted and additional element is masked
females4 = [20, 11, 17, np.nan, 1000, 12]
mask4 = [False, False, False, False, True, False]
females4 = np.ma.masked_array(females4, mask=mask4)
res4 = stats.mannwhitneyu(males, females4, nan_policy='omit')
np.testing.assert_array_equal(res4, res)
# same result when extra elements, including nan, are masked
females5 = [20, 11, 17, np.nan, 1000, 12]
mask5 = [False, False, False, True, True, False]
females5 = np.ma.masked_array(females5, mask=mask5)
res5 = stats.mannwhitneyu(males, females5, nan_policy='propagate')
res6 = stats.mannwhitneyu(males, females5, nan_policy='raise')
np.testing.assert_array_equal(res5, res)
np.testing.assert_array_equal(res6, res)
@pytest.mark.parametrize(("axis"), range(-3, 3))
def test_masked_stat_3d(axis):
# basic test of _axis_nan_policy_factory with 3D masked sample
np.random.seed(0)
a = np.random.rand(3, 4, 5)
b = np.random.rand(4, 5)
c = np.random.rand(4, 1)
mask_a = a < 0.1
mask_c = [False, False, False, True]
a_masked = np.ma.masked_array(a, mask=mask_a)
c_masked = np.ma.masked_array(c, mask=mask_c)
a_nans = a.copy()
a_nans[mask_a] = np.nan
c_nans = c.copy()
c_nans[mask_c] = np.nan
res = stats.kruskal(a_nans, b, c_nans, nan_policy='omit', axis=axis)
res2 = stats.kruskal(a_masked, b, c_masked, axis=axis)
np.testing.assert_array_equal(res, res2)
def test_mixed_mask_nan_1():
# targeted test of _axis_nan_policy_factory with 2D masked sample:
# omitting samples with masks and nan_policy='omit' are equivalent
# also checks paired-sample sentinel value removal
m, n = 3, 20
axis = -1
np.random.seed(0)
a = np.random.rand(m, n)
b = np.random.rand(m, n)
mask_a1 = np.random.rand(m, n) < 0.2
mask_a2 = np.random.rand(m, n) < 0.1
mask_b1 = np.random.rand(m, n) < 0.15
mask_b2 = np.random.rand(m, n) < 0.15
mask_a1[2, :] = True
a_nans = a.copy()
b_nans = b.copy()
a_nans[mask_a1 | mask_a2] = np.nan
b_nans[mask_b1 | mask_b2] = np.nan
a_masked1 = np.ma.masked_array(a, mask=mask_a1)
b_masked1 = np.ma.masked_array(b, mask=mask_b1)
a_masked1[mask_a2] = np.nan
b_masked1[mask_b2] = np.nan
a_masked2 = np.ma.masked_array(a, mask=mask_a2)
b_masked2 = np.ma.masked_array(b, mask=mask_b2)
a_masked2[mask_a1] = np.nan
b_masked2[mask_b1] = np.nan
a_masked3 = np.ma.masked_array(a, mask=(mask_a1 | mask_a2))
b_masked3 = np.ma.masked_array(b, mask=(mask_b1 | mask_b2))
res = stats.wilcoxon(a_nans, b_nans, nan_policy='omit', axis=axis)
res1 = stats.wilcoxon(a_masked1, b_masked1, nan_policy='omit', axis=axis)
res2 = stats.wilcoxon(a_masked2, b_masked2, nan_policy='omit', axis=axis)
res3 = stats.wilcoxon(a_masked3, b_masked3, nan_policy='raise', axis=axis)
res4 = stats.wilcoxon(a_masked3, b_masked3,
nan_policy='propagate', axis=axis)
np.testing.assert_array_equal(res1, res)
np.testing.assert_array_equal(res2, res)
np.testing.assert_array_equal(res3, res)
np.testing.assert_array_equal(res4, res)
def test_mixed_mask_nan_2():
# targeted test of _axis_nan_policy_factory with 2D masked sample:
# check for expected interaction between masks and nans
# Cases here are
# [mixed nan/mask, all nans, all masked,
# unmasked nan, masked nan, unmasked non-nan]
a = [[1, np.nan, 2], [np.nan, np.nan, np.nan], [1, 2, 3],
[1, np.nan, 3], [1, np.nan, 3], [1, 2, 3]]
mask = [[1, 0, 1], [0, 0, 0], [1, 1, 1],
[0, 0, 0], [0, 1, 0], [0, 0, 0]]
a_masked = np.ma.masked_array(a, mask=mask)
b = [[4, 5, 6]]
ref1 = stats.ranksums([1, 3], [4, 5, 6])
ref2 = stats.ranksums([1, 2, 3], [4, 5, 6])
# nan_policy = 'omit'
# all elements are removed from first three rows
# middle element is removed from fourth and fifth rows
# no elements removed from last row
res = stats.ranksums(a_masked, b, nan_policy='omit', axis=-1)
stat_ref = [np.nan, np.nan, np.nan,
ref1.statistic, ref1.statistic, ref2.statistic]
p_ref = [np.nan, np.nan, np.nan,
ref1.pvalue, ref1.pvalue, ref2.pvalue]
np.testing.assert_array_equal(res.statistic, stat_ref)
np.testing.assert_array_equal(res.pvalue, p_ref)
# nan_policy = 'propagate'
# nans propagate in first, second, and fourth row
# all elements are removed by mask from third row
# middle element is removed from fifth row
# no elements removed from last row
res = stats.ranksums(a_masked, b, nan_policy='propagate', axis=-1)
stat_ref = [np.nan, np.nan, np.nan,
np.nan, ref1.statistic, ref2.statistic]
p_ref = [np.nan, np.nan, np.nan,
np.nan, ref1.pvalue, ref2.pvalue]
np.testing.assert_array_equal(res.statistic, stat_ref)
np.testing.assert_array_equal(res.pvalue, p_ref)
def test_axis_None_vs_tuple():
# `axis` `None` should be equivalent to tuple with all axes
shape = (3, 8, 9, 10)
rng = np.random.default_rng(0)
x = rng.random(shape)
res = stats.kruskal(*x, axis=None)
res2 = stats.kruskal(*x, axis=(0, 1, 2))
np.testing.assert_array_equal(res, res2)
def test_axis_None_vs_tuple_with_broadcasting():
# `axis` `None` should be equivalent to tuple with all axes,
# which should be equivalent to raveling the arrays before passing them
rng = np.random.default_rng(0)
x = rng.random((5, 1))
y = rng.random((1, 5))
x2, y2 = np.broadcast_arrays(x, y)
res0 = stats.mannwhitneyu(x.ravel(), y.ravel())
res1 = stats.mannwhitneyu(x, y, axis=None)
res2 = stats.mannwhitneyu(x, y, axis=(0, 1))
res3 = stats.mannwhitneyu(x2.ravel(), y2.ravel())
assert res1 == res0
assert res2 == res0
assert res3 != res0
@pytest.mark.parametrize(("axis"),
list(permutations(range(-3, 3), 2)) + [(-4, 1)])
def test_other_axis_tuples(axis):
# Check that _axis_nan_policy_factory treates all `axis` tuples as expected
rng = np.random.default_rng(0)
shape_x = (4, 5, 6)
shape_y = (1, 6)
x = rng.random(shape_x)
y = rng.random(shape_y)
axis_original = axis
# convert axis elements to positive
axis = tuple([(i if i >= 0 else 3 + i) for i in axis])
axis = sorted(axis)
if len(set(axis)) != len(axis):
message = "`axis` must contain only distinct elements"
with pytest.raises(np.AxisError, match=re.escape(message)):
stats.mannwhitneyu(x, y, axis=axis_original)
return
if axis[0] < 0 or axis[-1] > 2:
message = "`axis` is out of bounds for array of dimension 3"
with pytest.raises(np.AxisError, match=re.escape(message)):
stats.mannwhitneyu(x, y, axis=axis_original)
return
res = stats.mannwhitneyu(x, y, axis=axis_original)
# reference behavior
not_axis = {0, 1, 2} - set(axis) # which axis is not part of `axis`
not_axis = next(iter(not_axis)) # take it out of the set
x2 = x
shape_y_broadcasted = [1, 1, 6]
shape_y_broadcasted[not_axis] = shape_x[not_axis]
y2 = np.broadcast_to(y, shape_y_broadcasted)
m = x2.shape[not_axis]
x2 = np.moveaxis(x2, axis, (1, 2))
y2 = np.moveaxis(y2, axis, (1, 2))
x2 = np.reshape(x2, (m, -1))
y2 = np.reshape(y2, (m, -1))
res2 = stats.mannwhitneyu(x2, y2, axis=1)
np.testing.assert_array_equal(res, res2)
@pytest.mark.parametrize(("weighted_fun_name"), ["gmean", "hmean", "pmean"])
def test_mean_mixed_mask_nan_weights(weighted_fun_name):
# targeted test of _axis_nan_policy_factory with 2D masked sample:
# omitting samples with masks and nan_policy='omit' are equivalent
# also checks paired-sample sentinel value removal
if weighted_fun_name == 'pmean':
def weighted_fun(a, **kwargs):
return stats.pmean(a, p=0.42, **kwargs)
else:
weighted_fun = getattr(stats, weighted_fun_name)
m, n = 3, 20
axis = -1
rng = np.random.default_rng(6541968121)
a = rng.uniform(size=(m, n))
b = rng.uniform(size=(m, n))
mask_a1 = rng.uniform(size=(m, n)) < 0.2
mask_a2 = rng.uniform(size=(m, n)) < 0.1
mask_b1 = rng.uniform(size=(m, n)) < 0.15
mask_b2 = rng.uniform(size=(m, n)) < 0.15
mask_a1[2, :] = True
a_nans = a.copy()
b_nans = b.copy()
a_nans[mask_a1 | mask_a2] = np.nan
b_nans[mask_b1 | mask_b2] = np.nan
a_masked1 = np.ma.masked_array(a, mask=mask_a1)
b_masked1 = np.ma.masked_array(b, mask=mask_b1)
a_masked1[mask_a2] = np.nan
b_masked1[mask_b2] = np.nan
a_masked2 = np.ma.masked_array(a, mask=mask_a2)
b_masked2 = np.ma.masked_array(b, mask=mask_b2)
a_masked2[mask_a1] = np.nan
b_masked2[mask_b1] = np.nan
a_masked3 = np.ma.masked_array(a, mask=(mask_a1 | mask_a2))
b_masked3 = np.ma.masked_array(b, mask=(mask_b1 | mask_b2))
mask_all = (mask_a1 | mask_a2 | mask_b1 | mask_b2)
a_masked4 = np.ma.masked_array(a, mask=mask_all)
b_masked4 = np.ma.masked_array(b, mask=mask_all)
with np.testing.suppress_warnings() as sup:
message = 'invalid value encountered'
sup.filter(RuntimeWarning, message)
res = weighted_fun(a_nans, weights=b_nans,
nan_policy='omit', axis=axis)
res1 = weighted_fun(a_masked1, weights=b_masked1,
nan_policy='omit', axis=axis)
res2 = weighted_fun(a_masked2, weights=b_masked2,
nan_policy='omit', axis=axis)
res3 = weighted_fun(a_masked3, weights=b_masked3,
nan_policy='raise', axis=axis)
res4 = weighted_fun(a_masked3, weights=b_masked3,
nan_policy='propagate', axis=axis)
# Would test with a_masked3/b_masked3, but there is a bug in np.average
# that causes a bug in _no_deco mean with masked weights. Would use
# np.ma.average, but that causes other problems. See numpy/numpy#7330.
if weighted_fun_name not in {'pmean', 'gmean'}:
weighted_fun_ma = getattr(stats.mstats, weighted_fun_name)
res5 = weighted_fun_ma(a_masked4, weights=b_masked4,
axis=axis, _no_deco=True)
np.testing.assert_array_equal(res1, res)
np.testing.assert_array_equal(res2, res)
np.testing.assert_array_equal(res3, res)
np.testing.assert_array_equal(res4, res)
if weighted_fun_name not in {'pmean', 'gmean'}:
# _no_deco mean returns masked array, last element was masked
np.testing.assert_allclose(res5.compressed(), res[~np.isnan(res)])