Intelegentny_Pszczelarz/.venv/Lib/site-packages/sklearn/ensemble/_hist_gradient_boosting/tests/test_monotonic_contraints.py
2023-06-19 00:49:18 +02:00

426 lines
16 KiB
Python

import re
import numpy as np
import pytest
from sklearn.ensemble._hist_gradient_boosting.grower import TreeGrower
from sklearn.ensemble._hist_gradient_boosting.common import G_H_DTYPE
from sklearn.ensemble._hist_gradient_boosting.common import X_BINNED_DTYPE
from sklearn.ensemble._hist_gradient_boosting.common import MonotonicConstraint
from sklearn.ensemble._hist_gradient_boosting.splitting import (
Splitter,
compute_node_value,
)
from sklearn.ensemble._hist_gradient_boosting.histogram import HistogramBuilder
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.ensemble import HistGradientBoostingClassifier
from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
n_threads = _openmp_effective_n_threads()
def is_increasing(a):
return (np.diff(a) >= 0.0).all()
def is_decreasing(a):
return (np.diff(a) <= 0.0).all()
def assert_leaves_values_monotonic(predictor, monotonic_cst):
# make sure leaves values (from left to right) are either all increasing
# or all decreasing (or neither) depending on the monotonic constraint.
nodes = predictor.nodes
def get_leaves_values():
"""get leaves values from left to right"""
values = []
def depth_first_collect_leaf_values(node_idx):
node = nodes[node_idx]
if node["is_leaf"]:
values.append(node["value"])
return
depth_first_collect_leaf_values(node["left"])
depth_first_collect_leaf_values(node["right"])
depth_first_collect_leaf_values(0) # start at root (0)
return values
values = get_leaves_values()
if monotonic_cst == MonotonicConstraint.NO_CST:
# some increasing, some decreasing
assert not is_increasing(values) and not is_decreasing(values)
elif monotonic_cst == MonotonicConstraint.POS:
# all increasing
assert is_increasing(values)
else: # NEG
# all decreasing
assert is_decreasing(values)
def assert_children_values_monotonic(predictor, monotonic_cst):
# Make sure siblings values respect the monotonic constraints. Left should
# be lower (resp greater) than right child if constraint is POS (resp.
# NEG).
# Note that this property alone isn't enough to ensure full monotonicity,
# since we also need to guanrantee that all the descendents of the left
# child won't be greater (resp. lower) than the right child, or its
# descendents. That's why we need to bound the predicted values (this is
# tested in assert_children_values_bounded)
nodes = predictor.nodes
left_lower = []
left_greater = []
for node in nodes:
if node["is_leaf"]:
continue
left_idx = node["left"]
right_idx = node["right"]
if nodes[left_idx]["value"] < nodes[right_idx]["value"]:
left_lower.append(node)
elif nodes[left_idx]["value"] > nodes[right_idx]["value"]:
left_greater.append(node)
if monotonic_cst == MonotonicConstraint.NO_CST:
assert left_lower and left_greater
elif monotonic_cst == MonotonicConstraint.POS:
assert left_lower and not left_greater
else: # NEG
assert not left_lower and left_greater
def assert_children_values_bounded(grower, monotonic_cst):
# Make sure that the values of the children of a node are bounded by the
# middle value between that node and its sibling (if there is a monotonic
# constraint).
# As a bonus, we also check that the siblings values are properly ordered
# which is slightly redundant with assert_children_values_monotonic (but
# this check is done on the grower nodes whereas
# assert_children_values_monotonic is done on the predictor nodes)
if monotonic_cst == MonotonicConstraint.NO_CST:
return
def recursively_check_children_node_values(node, right_sibling=None):
if node.is_leaf:
return
if right_sibling is not None:
middle = (node.value + right_sibling.value) / 2
if monotonic_cst == MonotonicConstraint.POS:
assert node.left_child.value <= node.right_child.value <= middle
if not right_sibling.is_leaf:
assert (
middle
<= right_sibling.left_child.value
<= right_sibling.right_child.value
)
else: # NEG
assert node.left_child.value >= node.right_child.value >= middle
if not right_sibling.is_leaf:
assert (
middle
>= right_sibling.left_child.value
>= right_sibling.right_child.value
)
recursively_check_children_node_values(
node.left_child, right_sibling=node.right_child
)
recursively_check_children_node_values(node.right_child)
recursively_check_children_node_values(grower.root)
@pytest.mark.parametrize("seed", range(3))
@pytest.mark.parametrize(
"monotonic_cst",
(
MonotonicConstraint.NO_CST,
MonotonicConstraint.POS,
MonotonicConstraint.NEG,
),
)
def test_nodes_values(monotonic_cst, seed):
# Build a single tree with only one feature, and make sure the nodes
# values respect the monotonic constraints.
# Considering the following tree with a monotonic POS constraint, we
# should have:
#
# root
# / \
# 5 10 # middle = 7.5
# / \ / \
# a b c d
#
# a <= b and c <= d (assert_children_values_monotonic)
# a, b <= middle <= c, d (assert_children_values_bounded)
# a <= b <= c <= d (assert_leaves_values_monotonic)
#
# The last one is a consequence of the others, but can't hurt to check
rng = np.random.RandomState(seed)
n_samples = 1000
n_features = 1
X_binned = rng.randint(0, 255, size=(n_samples, n_features), dtype=np.uint8)
X_binned = np.asfortranarray(X_binned)
gradients = rng.normal(size=n_samples).astype(G_H_DTYPE)
hessians = np.ones(shape=1, dtype=G_H_DTYPE)
grower = TreeGrower(
X_binned, gradients, hessians, monotonic_cst=[monotonic_cst], shrinkage=0.1
)
grower.grow()
# grow() will shrink the leaves values at the very end. For our comparison
# tests, we need to revert the shrinkage of the leaves, else we would
# compare the value of a leaf (shrunk) with a node (not shrunk) and the
# test would not be correct.
for leave in grower.finalized_leaves:
leave.value /= grower.shrinkage
# We pass undefined binning_thresholds because we won't use predict anyway
predictor = grower.make_predictor(
binning_thresholds=np.zeros((X_binned.shape[1], X_binned.max() + 1))
)
# The consistency of the bounds can only be checked on the tree grower
# as the node bounds are not copied into the predictor tree. The
# consistency checks on the values of node children and leaves can be
# done either on the grower tree or on the predictor tree. We only
# do those checks on the predictor tree as the latter is derived from
# the former.
assert_children_values_monotonic(predictor, monotonic_cst)
assert_children_values_bounded(grower, monotonic_cst)
assert_leaves_values_monotonic(predictor, monotonic_cst)
@pytest.mark.parametrize("use_feature_names", (True, False))
def test_predictions(global_random_seed, use_feature_names):
# Train a model with a POS constraint on the first feature and a NEG
# constraint on the second feature, and make sure the constraints are
# respected by checking the predictions.
# test adapted from lightgbm's test_monotone_constraint(), itself inspired
# by https://xgboost.readthedocs.io/en/latest/tutorials/monotonic.html
rng = np.random.RandomState(global_random_seed)
n_samples = 1000
f_0 = rng.rand(n_samples) # positive correlation with y
f_1 = rng.rand(n_samples) # negative correslation with y
X = np.c_[f_0, f_1]
if use_feature_names:
pd = pytest.importorskip("pandas")
X = pd.DataFrame(X, columns=["f_0", "f_1"])
noise = rng.normal(loc=0.0, scale=0.01, size=n_samples)
y = 5 * f_0 + np.sin(10 * np.pi * f_0) - 5 * f_1 - np.cos(10 * np.pi * f_1) + noise
if use_feature_names:
monotonic_cst = {"f_0": +1, "f_1": -1}
else:
monotonic_cst = [+1, -1]
gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
gbdt.fit(X, y)
linspace = np.linspace(0, 1, 100)
sin = np.sin(linspace)
constant = np.full_like(linspace, fill_value=0.5)
# We now assert the predictions properly respect the constraints, on each
# feature. When testing for a feature we need to set the other one to a
# constant, because the monotonic constraints are only a "all else being
# equal" type of constraints:
# a constraint on the first feature only means that
# x0 < x0' => f(x0, x1) < f(x0', x1)
# while x1 stays constant.
# The constraint does not guanrantee that
# x0 < x0' => f(x0, x1) < f(x0', x1')
# First feature (POS)
# assert pred is all increasing when f_0 is all increasing
X = np.c_[linspace, constant]
pred = gbdt.predict(X)
assert is_increasing(pred)
# assert pred actually follows the variations of f_0
X = np.c_[sin, constant]
pred = gbdt.predict(X)
assert np.all((np.diff(pred) >= 0) == (np.diff(sin) >= 0))
# Second feature (NEG)
# assert pred is all decreasing when f_1 is all increasing
X = np.c_[constant, linspace]
pred = gbdt.predict(X)
assert is_decreasing(pred)
# assert pred actually follows the inverse variations of f_1
X = np.c_[constant, sin]
pred = gbdt.predict(X)
assert ((np.diff(pred) <= 0) == (np.diff(sin) >= 0)).all()
def test_input_error():
X = [[1, 2], [2, 3], [3, 4]]
y = [0, 1, 2]
gbdt = HistGradientBoostingRegressor(monotonic_cst=[1, 0, -1])
with pytest.raises(
ValueError, match=re.escape("monotonic_cst has shape (3,) but the input data")
):
gbdt.fit(X, y)
for monotonic_cst in ([1, 3], [1, -3], [0.3, -0.7]):
gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
expected_msg = re.escape(
"must be an array-like of -1, 0 or 1. Observed values:"
)
with pytest.raises(ValueError, match=expected_msg):
gbdt.fit(X, y)
gbdt = HistGradientBoostingClassifier(monotonic_cst=[0, 1])
with pytest.raises(
ValueError,
match="monotonic constraints are not supported for multiclass classification",
):
gbdt.fit(X, y)
def test_input_error_related_to_feature_names():
pd = pytest.importorskip("pandas")
X = pd.DataFrame({"a": [0, 1, 2], "b": [0, 1, 2]})
y = np.array([0, 1, 0])
monotonic_cst = {"d": 1, "a": 1, "c": -1}
gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
expected_msg = re.escape(
"monotonic_cst contains 2 unexpected feature names: ['c', 'd']."
)
with pytest.raises(ValueError, match=expected_msg):
gbdt.fit(X, y)
monotonic_cst = {k: 1 for k in "abcdefghijklmnopqrstuvwxyz"}
gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
expected_msg = re.escape(
"monotonic_cst contains 24 unexpected feature names: "
"['c', 'd', 'e', 'f', 'g', '...']."
)
with pytest.raises(ValueError, match=expected_msg):
gbdt.fit(X, y)
monotonic_cst = {"a": 1}
gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
expected_msg = re.escape(
"HistGradientBoostingRegressor was not fitted on data with feature "
"names. Pass monotonic_cst as an integer array instead."
)
with pytest.raises(ValueError, match=expected_msg):
gbdt.fit(X.values, y)
monotonic_cst = {"b": -1, "a": "+"}
gbdt = HistGradientBoostingRegressor(monotonic_cst=monotonic_cst)
expected_msg = re.escape("monotonic_cst['a'] must be either -1, 0 or 1. Got '+'.")
with pytest.raises(ValueError, match=expected_msg):
gbdt.fit(X, y)
def test_bounded_value_min_gain_to_split():
# The purpose of this test is to show that when computing the gain at a
# given split, the value of the current node should be properly bounded to
# respect the monotonic constraints, because it strongly interacts with
# min_gain_to_split. We build a simple example where gradients are [1, 1,
# 100, 1, 1] (hessians are all ones). The best split happens on the 3rd
# bin, and depending on whether the value of the node is bounded or not,
# the min_gain_to_split constraint is or isn't satisfied.
l2_regularization = 0
min_hessian_to_split = 0
min_samples_leaf = 1
n_bins = n_samples = 5
X_binned = np.arange(n_samples).reshape(-1, 1).astype(X_BINNED_DTYPE)
sample_indices = np.arange(n_samples, dtype=np.uint32)
all_hessians = np.ones(n_samples, dtype=G_H_DTYPE)
all_gradients = np.array([1, 1, 100, 1, 1], dtype=G_H_DTYPE)
sum_gradients = all_gradients.sum()
sum_hessians = all_hessians.sum()
hessians_are_constant = False
builder = HistogramBuilder(
X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads
)
n_bins_non_missing = np.array([n_bins - 1] * X_binned.shape[1], dtype=np.uint32)
has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8)
monotonic_cst = np.array(
[MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
)
is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8)
missing_values_bin_idx = n_bins - 1
children_lower_bound, children_upper_bound = -np.inf, np.inf
min_gain_to_split = 2000
splitter = Splitter(
X_binned,
n_bins_non_missing,
missing_values_bin_idx,
has_missing_values,
is_categorical,
monotonic_cst,
l2_regularization,
min_hessian_to_split,
min_samples_leaf,
min_gain_to_split,
hessians_are_constant,
)
histograms = builder.compute_histograms_brute(sample_indices)
# Since the gradient array is [1, 1, 100, 1, 1]
# the max possible gain happens on the 3rd bin (or equivalently in the 2nd)
# and is equal to about 1307, which less than min_gain_to_split = 2000, so
# the node is considered unsplittable (gain = -1)
current_lower_bound, current_upper_bound = -np.inf, np.inf
value = compute_node_value(
sum_gradients,
sum_hessians,
current_lower_bound,
current_upper_bound,
l2_regularization,
)
# the unbounded value is equal to -sum_gradients / sum_hessians
assert value == pytest.approx(-104 / 5)
split_info = splitter.find_node_split(
n_samples,
histograms,
sum_gradients,
sum_hessians,
value,
lower_bound=children_lower_bound,
upper_bound=children_upper_bound,
)
assert split_info.gain == -1 # min_gain_to_split not respected
# here again the max possible gain is on the 3rd bin but we now cap the
# value of the node into [-10, inf].
# This means the gain is now about 2430 which is more than the
# min_gain_to_split constraint.
current_lower_bound, current_upper_bound = -10, np.inf
value = compute_node_value(
sum_gradients,
sum_hessians,
current_lower_bound,
current_upper_bound,
l2_regularization,
)
assert value == -10
split_info = splitter.find_node_split(
n_samples,
histograms,
sum_gradients,
sum_hessians,
value,
lower_bound=children_lower_bound,
upper_bound=children_upper_bound,
)
assert split_info.gain > min_gain_to_split