Intelegentny_Pszczelarz/.venv/Lib/site-packages/sklearn/linear_model/_glm/tests/test_glm.py
2023-06-19 00:49:18 +02:00

1137 lines
40 KiB
Python

# Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
#
# License: BSD 3 clause
from functools import partial
import itertools
import warnings
import numpy as np
from numpy.testing import assert_allclose
import pytest
import scipy
from scipy import linalg
from scipy.optimize import minimize, root
from sklearn.base import clone
from sklearn._loss import HalfBinomialLoss, HalfPoissonLoss, HalfTweedieLoss
from sklearn._loss.glm_distribution import TweedieDistribution
from sklearn._loss.link import IdentityLink, LogLink
from sklearn.datasets import make_low_rank_matrix, make_regression
from sklearn.linear_model import (
GammaRegressor,
PoissonRegressor,
Ridge,
TweedieRegressor,
)
from sklearn.linear_model._glm import _GeneralizedLinearRegressor
from sklearn.linear_model._glm._newton_solver import NewtonCholeskySolver
from sklearn.linear_model._linear_loss import LinearModelLoss
from sklearn.exceptions import ConvergenceWarning
from sklearn.metrics import d2_tweedie_score, mean_poisson_deviance
from sklearn.model_selection import train_test_split
SOLVERS = ["lbfgs", "newton-cholesky"]
class BinomialRegressor(_GeneralizedLinearRegressor):
def _get_loss(self):
return HalfBinomialLoss()
def _special_minimize(fun, grad, x, tol_NM, tol):
# Find good starting point by Nelder-Mead
res_NM = minimize(
fun, x, method="Nelder-Mead", options={"xatol": tol_NM, "fatol": tol_NM}
)
# Now refine via root finding on the gradient of the function, which is
# more precise than minimizing the function itself.
res = root(
grad,
res_NM.x,
method="lm",
options={"ftol": tol, "xtol": tol, "gtol": tol},
)
return res.x
@pytest.fixture(scope="module")
def regression_data():
X, y = make_regression(
n_samples=107, n_features=10, n_informative=80, noise=0.5, random_state=2
)
return X, y
@pytest.fixture(
params=itertools.product(
["long", "wide"],
[
BinomialRegressor(),
PoissonRegressor(),
GammaRegressor(),
# TweedieRegressor(power=3.0), # too difficult
# TweedieRegressor(power=0, link="log"), # too difficult
TweedieRegressor(power=1.5),
],
),
ids=lambda param: f"{param[0]}-{param[1]}",
)
def glm_dataset(global_random_seed, request):
"""Dataset with GLM solutions, well conditioned X.
This is inspired by ols_ridge_dataset in test_ridge.py.
The construction is based on the SVD decomposition of X = U S V'.
Parameters
----------
type : {"long", "wide"}
If "long", then n_samples > n_features.
If "wide", then n_features > n_samples.
model : a GLM model
For "wide", we return the minimum norm solution:
min ||w||_2 subject to w = argmin deviance(X, y, w)
Note that the deviance is always minimized if y = inverse_link(X w) is possible to
achieve, which it is in the wide data case. Therefore, we can construct the
solution with minimum norm like (wide) OLS:
min ||w||_2 subject to link(y) = raw_prediction = X w
Returns
-------
model : GLM model
X : ndarray
Last column of 1, i.e. intercept.
y : ndarray
coef_unpenalized : ndarray
Minimum norm solutions, i.e. min sum(loss(w)) (with mininum ||w||_2 in
case of ambiguity)
Last coefficient is intercept.
coef_penalized : ndarray
GLM solution with alpha=l2_reg_strength=1, i.e.
min 1/n * sum(loss) + ||w[:-1]||_2^2.
Last coefficient is intercept.
l2_reg_strength : float
Always equal 1.
"""
data_type, model = request.param
# Make larger dim more than double as big as the smaller one.
# This helps when constructing singular matrices like (X, X).
if data_type == "long":
n_samples, n_features = 12, 4
else:
n_samples, n_features = 4, 12
k = min(n_samples, n_features)
rng = np.random.RandomState(global_random_seed)
X = make_low_rank_matrix(
n_samples=n_samples,
n_features=n_features,
effective_rank=k,
tail_strength=0.1,
random_state=rng,
)
X[:, -1] = 1 # last columns acts as intercept
U, s, Vt = linalg.svd(X, full_matrices=False)
assert np.all(s > 1e-3) # to be sure
assert np.max(s) / np.min(s) < 100 # condition number of X
if data_type == "long":
coef_unpenalized = rng.uniform(low=1, high=3, size=n_features)
coef_unpenalized *= rng.choice([-1, 1], size=n_features)
raw_prediction = X @ coef_unpenalized
else:
raw_prediction = rng.uniform(low=-3, high=3, size=n_samples)
# minimum norm solution min ||w||_2 such that raw_prediction = X w:
# w = X'(XX')^-1 raw_prediction = V s^-1 U' raw_prediction
coef_unpenalized = Vt.T @ np.diag(1 / s) @ U.T @ raw_prediction
linear_loss = LinearModelLoss(base_loss=model._get_loss(), fit_intercept=True)
sw = np.full(shape=n_samples, fill_value=1 / n_samples)
y = linear_loss.base_loss.link.inverse(raw_prediction)
# Add penalty l2_reg_strength * ||coef||_2^2 for l2_reg_strength=1 and solve with
# optimizer. Note that the problem is well conditioned such that we get accurate
# results.
l2_reg_strength = 1
fun = partial(
linear_loss.loss,
X=X[:, :-1],
y=y,
sample_weight=sw,
l2_reg_strength=l2_reg_strength,
)
grad = partial(
linear_loss.gradient,
X=X[:, :-1],
y=y,
sample_weight=sw,
l2_reg_strength=l2_reg_strength,
)
coef_penalized_with_intercept = _special_minimize(
fun, grad, coef_unpenalized, tol_NM=1e-6, tol=1e-14
)
linear_loss = LinearModelLoss(base_loss=model._get_loss(), fit_intercept=False)
fun = partial(
linear_loss.loss,
X=X[:, :-1],
y=y,
sample_weight=sw,
l2_reg_strength=l2_reg_strength,
)
grad = partial(
linear_loss.gradient,
X=X[:, :-1],
y=y,
sample_weight=sw,
l2_reg_strength=l2_reg_strength,
)
coef_penalized_without_intercept = _special_minimize(
fun, grad, coef_unpenalized[:-1], tol_NM=1e-6, tol=1e-14
)
# To be sure
assert np.linalg.norm(coef_penalized_with_intercept) < np.linalg.norm(
coef_unpenalized
)
return (
model,
X,
y,
coef_unpenalized,
coef_penalized_with_intercept,
coef_penalized_without_intercept,
l2_reg_strength,
)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [False, True])
def test_glm_regression(solver, fit_intercept, glm_dataset):
"""Test that GLM converges for all solvers to correct solution.
We work with a simple constructed data set with known solution.
"""
model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset
params = dict(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-12,
max_iter=1000,
)
model = clone(model).set_params(**params)
X = X[:, :-1] # remove intercept
if fit_intercept:
coef = coef_with_intercept
intercept = coef[-1]
coef = coef[:-1]
else:
coef = coef_without_intercept
intercept = 0
model.fit(X, y)
rtol = 5e-5 if solver == "lbfgs" else 1e-9
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
assert_allclose(model.coef_, coef, rtol=rtol)
# Same with sample_weight.
model = (
clone(model).set_params(**params).fit(X, y, sample_weight=np.ones(X.shape[0]))
)
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
assert_allclose(model.coef_, coef, rtol=rtol)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_hstacked_X(solver, fit_intercept, glm_dataset):
"""Test that GLM converges for all solvers to correct solution on hstacked data.
We work with a simple constructed data set with known solution.
Fit on [X] with alpha is the same as fit on [X, X]/2 with alpha/2.
For long X, [X, X] is still a long but singular matrix.
"""
model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset
n_samples, n_features = X.shape
params = dict(
alpha=alpha / 2,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-12,
max_iter=1000,
)
model = clone(model).set_params(**params)
X = X[:, :-1] # remove intercept
X = 0.5 * np.concatenate((X, X), axis=1)
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features - 1)
if fit_intercept:
coef = coef_with_intercept
intercept = coef[-1]
coef = coef[:-1]
else:
coef = coef_without_intercept
intercept = 0
with warnings.catch_warnings():
# XXX: Investigate if the ConvergenceWarning that can appear in some
# cases should be considered a bug or not. In the mean time we don't
# fail when the assertions below pass irrespective of the presence of
# the warning.
warnings.simplefilter("ignore", ConvergenceWarning)
model.fit(X, y)
rtol = 2e-4 if solver == "lbfgs" else 5e-9
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
assert_allclose(model.coef_, np.r_[coef, coef], rtol=rtol)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_vstacked_X(solver, fit_intercept, glm_dataset):
"""Test that GLM converges for all solvers to correct solution on vstacked data.
We work with a simple constructed data set with known solution.
Fit on [X] with alpha is the same as fit on [X], [y]
[X], [y] with 1 * alpha.
It is the same alpha as the average loss stays the same.
For wide X, [X', X'] is a singular matrix.
"""
model, X, y, _, coef_with_intercept, coef_without_intercept, alpha = glm_dataset
n_samples, n_features = X.shape
params = dict(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-12,
max_iter=1000,
)
model = clone(model).set_params(**params)
X = X[:, :-1] # remove intercept
X = np.concatenate((X, X), axis=0)
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
y = np.r_[y, y]
if fit_intercept:
coef = coef_with_intercept
intercept = coef[-1]
coef = coef[:-1]
else:
coef = coef_without_intercept
intercept = 0
model.fit(X, y)
rtol = 3e-5 if solver == "lbfgs" else 5e-9
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
assert_allclose(model.coef_, coef, rtol=rtol)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_unpenalized(solver, fit_intercept, glm_dataset):
"""Test that unpenalized GLM converges for all solvers to correct solution.
We work with a simple constructed data set with known solution.
Note: This checks the minimum norm solution for wide X, i.e.
n_samples < n_features:
min ||w||_2 subject to w = argmin deviance(X, y, w)
"""
model, X, y, coef, _, _, _ = glm_dataset
n_samples, n_features = X.shape
alpha = 0 # unpenalized
params = dict(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-12,
max_iter=1000,
)
model = clone(model).set_params(**params)
if fit_intercept:
X = X[:, :-1] # remove intercept
intercept = coef[-1]
coef = coef[:-1]
else:
intercept = 0
with warnings.catch_warnings():
if solver.startswith("newton") and n_samples < n_features:
# The newton solvers should warn and automatically fallback to LBFGS
# in this case. The model should still converge.
warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning)
# XXX: Investigate if the ConvergenceWarning that can appear in some
# cases should be considered a bug or not. In the mean time we don't
# fail when the assertions below pass irrespective of the presence of
# the warning.
warnings.filterwarnings("ignore", category=ConvergenceWarning)
model.fit(X, y)
# FIXME: `assert_allclose(model.coef_, coef)` should work for all cases but fails
# for the wide/fat case with n_features > n_samples. Most current GLM solvers do
# NOT return the minimum norm solution with fit_intercept=True.
if n_samples > n_features:
rtol = 5e-5 if solver == "lbfgs" else 1e-7
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef, rtol=rtol)
else:
# As it is an underdetermined problem, prediction = y. The following shows that
# we get a solution, i.e. a (non-unique) minimum of the objective function ...
rtol = 5e-5
if solver == "newton-cholesky":
rtol = 5e-4
assert_allclose(model.predict(X), y, rtol=rtol)
norm_solution = np.linalg.norm(np.r_[intercept, coef])
norm_model = np.linalg.norm(np.r_[model.intercept_, model.coef_])
if solver == "newton-cholesky":
# XXX: This solver shows random behaviour. Sometimes it finds solutions
# with norm_model <= norm_solution! So we check conditionally.
if norm_model < (1 + 1e-12) * norm_solution:
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef, rtol=rtol)
elif solver == "lbfgs" and fit_intercept:
# But it is not the minimum norm solution. Otherwise the norms would be
# equal.
assert norm_model > (1 + 1e-12) * norm_solution
# See https://github.com/scikit-learn/scikit-learn/issues/23670.
# Note: Even adding a tiny penalty does not give the minimal norm solution.
# XXX: We could have naively expected LBFGS to find the minimal norm
# solution by adding a very small penalty. Even that fails for a reason we
# do not properly understand at this point.
else:
# When `fit_intercept=False`, LBFGS naturally converges to the minimum norm
# solution on this problem.
# XXX: Do we have any theoretical guarantees why this should be the case?
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
assert_allclose(model.coef_, coef, rtol=rtol)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_unpenalized_hstacked_X(solver, fit_intercept, glm_dataset):
"""Test that unpenalized GLM converges for all solvers to correct solution.
We work with a simple constructed data set with known solution.
GLM fit on [X] is the same as fit on [X, X]/2.
For long X, [X, X] is a singular matrix and we check against the minimum norm
solution:
min ||w||_2 subject to w = argmin deviance(X, y, w)
"""
model, X, y, coef, _, _, _ = glm_dataset
n_samples, n_features = X.shape
alpha = 0 # unpenalized
params = dict(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-12,
max_iter=1000,
)
model = clone(model).set_params(**params)
if fit_intercept:
intercept = coef[-1]
coef = coef[:-1]
if n_samples > n_features:
X = X[:, :-1] # remove intercept
X = 0.5 * np.concatenate((X, X), axis=1)
else:
# To know the minimum norm solution, we keep one intercept column and do
# not divide by 2. Later on, we must take special care.
X = np.c_[X[:, :-1], X[:, :-1], X[:, -1]]
else:
intercept = 0
X = 0.5 * np.concatenate((X, X), axis=1)
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
with warnings.catch_warnings():
if solver.startswith("newton"):
# The newton solvers should warn and automatically fallback to LBFGS
# in this case. The model should still converge.
warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning)
# XXX: Investigate if the ConvergenceWarning that can appear in some
# cases should be considered a bug or not. In the mean time we don't
# fail when the assertions below pass irrespective of the presence of
# the warning.
warnings.filterwarnings("ignore", category=ConvergenceWarning)
model.fit(X, y)
if fit_intercept and n_samples < n_features:
# Here we take special care.
model_intercept = 2 * model.intercept_
model_coef = 2 * model.coef_[:-1] # exclude the other intercept term.
# For minimum norm solution, we would have
# assert model.intercept_ == pytest.approx(model.coef_[-1])
else:
model_intercept = model.intercept_
model_coef = model.coef_
if n_samples > n_features:
assert model_intercept == pytest.approx(intercept)
rtol = 1e-4
assert_allclose(model_coef, np.r_[coef, coef], rtol=rtol)
else:
# As it is an underdetermined problem, prediction = y. The following shows that
# we get a solution, i.e. a (non-unique) minimum of the objective function ...
rtol = 1e-6 if solver == "lbfgs" else 5e-6
assert_allclose(model.predict(X), y, rtol=rtol)
if (solver == "lbfgs" and fit_intercept) or solver == "newton-cholesky":
# Same as in test_glm_regression_unpenalized.
# But it is not the minimum norm solution. Otherwise the norms would be
# equal.
norm_solution = np.linalg.norm(
0.5 * np.r_[intercept, intercept, coef, coef]
)
norm_model = np.linalg.norm(np.r_[model.intercept_, model.coef_])
assert norm_model > (1 + 1e-12) * norm_solution
# For minimum norm solution, we would have
# assert model.intercept_ == pytest.approx(model.coef_[-1])
else:
assert model_intercept == pytest.approx(intercept, rel=5e-6)
assert_allclose(model_coef, np.r_[coef, coef], rtol=1e-4)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_glm_regression_unpenalized_vstacked_X(solver, fit_intercept, glm_dataset):
"""Test that unpenalized GLM converges for all solvers to correct solution.
We work with a simple constructed data set with known solution.
GLM fit on [X] is the same as fit on [X], [y]
[X], [y].
For wide X, [X', X'] is a singular matrix and we check against the minimum norm
solution:
min ||w||_2 subject to w = argmin deviance(X, y, w)
"""
model, X, y, coef, _, _, _ = glm_dataset
n_samples, n_features = X.shape
alpha = 0 # unpenalized
params = dict(
alpha=alpha,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-12,
max_iter=1000,
)
model = clone(model).set_params(**params)
if fit_intercept:
X = X[:, :-1] # remove intercept
intercept = coef[-1]
coef = coef[:-1]
else:
intercept = 0
X = np.concatenate((X, X), axis=0)
assert np.linalg.matrix_rank(X) <= min(n_samples, n_features)
y = np.r_[y, y]
with warnings.catch_warnings():
if solver.startswith("newton") and n_samples < n_features:
# The newton solvers should warn and automatically fallback to LBFGS
# in this case. The model should still converge.
warnings.filterwarnings("ignore", category=scipy.linalg.LinAlgWarning)
# XXX: Investigate if the ConvergenceWarning that can appear in some
# cases should be considered a bug or not. In the mean time we don't
# fail when the assertions below pass irrespective of the presence of
# the warning.
warnings.filterwarnings("ignore", category=ConvergenceWarning)
model.fit(X, y)
if n_samples > n_features:
rtol = 5e-5 if solver == "lbfgs" else 1e-6
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef, rtol=rtol)
else:
# As it is an underdetermined problem, prediction = y. The following shows that
# we get a solution, i.e. a (non-unique) minimum of the objective function ...
rtol = 1e-6 if solver == "lbfgs" else 5e-6
assert_allclose(model.predict(X), y, rtol=rtol)
norm_solution = np.linalg.norm(np.r_[intercept, coef])
norm_model = np.linalg.norm(np.r_[model.intercept_, model.coef_])
if solver == "newton-cholesky":
# XXX: This solver shows random behaviour. Sometimes it finds solutions
# with norm_model <= norm_solution! So we check conditionally.
if not (norm_model > (1 + 1e-12) * norm_solution):
assert model.intercept_ == pytest.approx(intercept)
assert_allclose(model.coef_, coef, rtol=1e-4)
elif solver == "lbfgs" and fit_intercept:
# Same as in test_glm_regression_unpenalized.
# But it is not the minimum norm solution. Otherwise the norms would be
# equal.
assert norm_model > (1 + 1e-12) * norm_solution
else:
rtol = 1e-5 if solver == "newton-cholesky" else 1e-4
assert model.intercept_ == pytest.approx(intercept, rel=rtol)
assert_allclose(model.coef_, coef, rtol=rtol)
def test_sample_weights_validation():
"""Test the raised errors in the validation of sample_weight."""
# scalar value but not positive
X = [[1]]
y = [1]
weights = 0
glm = _GeneralizedLinearRegressor()
# Positive weights are accepted
glm.fit(X, y, sample_weight=1)
# 2d array
weights = [[0]]
with pytest.raises(ValueError, match="must be 1D array or scalar"):
glm.fit(X, y, weights)
# 1d but wrong length
weights = [1, 0]
msg = r"sample_weight.shape == \(2,\), expected \(1,\)!"
with pytest.raises(ValueError, match=msg):
glm.fit(X, y, weights)
@pytest.mark.parametrize(
"glm",
[
TweedieRegressor(power=3),
PoissonRegressor(),
GammaRegressor(),
TweedieRegressor(power=1.5),
],
)
def test_glm_wrong_y_range(glm):
y = np.array([-1, 2])
X = np.array([[1], [1]])
msg = r"Some value\(s\) of y are out of the valid range of the loss"
with pytest.raises(ValueError, match=msg):
glm.fit(X, y)
@pytest.mark.parametrize("fit_intercept", [False, True])
def test_glm_identity_regression(fit_intercept):
"""Test GLM regression with identity link on a simple dataset."""
coef = [1.0, 2.0]
X = np.array([[1, 1, 1, 1, 1], [0, 1, 2, 3, 4]]).T
y = np.dot(X, coef)
glm = _GeneralizedLinearRegressor(
alpha=0,
fit_intercept=fit_intercept,
tol=1e-12,
)
if fit_intercept:
glm.fit(X[:, 1:], y)
assert_allclose(glm.coef_, coef[1:], rtol=1e-10)
assert_allclose(glm.intercept_, coef[0], rtol=1e-10)
else:
glm.fit(X, y)
assert_allclose(glm.coef_, coef, rtol=1e-12)
@pytest.mark.parametrize("fit_intercept", [False, True])
@pytest.mark.parametrize("alpha", [0.0, 1.0])
@pytest.mark.parametrize(
"GLMEstimator", [_GeneralizedLinearRegressor, PoissonRegressor, GammaRegressor]
)
def test_glm_sample_weight_consistency(fit_intercept, alpha, GLMEstimator):
"""Test that the impact of sample_weight is consistent"""
rng = np.random.RandomState(0)
n_samples, n_features = 10, 5
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples)
glm_params = dict(alpha=alpha, fit_intercept=fit_intercept)
glm = GLMEstimator(**glm_params).fit(X, y)
coef = glm.coef_.copy()
# sample_weight=np.ones(..) should be equivalent to sample_weight=None
sample_weight = np.ones(y.shape)
glm.fit(X, y, sample_weight=sample_weight)
assert_allclose(glm.coef_, coef, rtol=1e-12)
# sample_weight are normalized to 1 so, scaling them has no effect
sample_weight = 2 * np.ones(y.shape)
glm.fit(X, y, sample_weight=sample_weight)
assert_allclose(glm.coef_, coef, rtol=1e-12)
# setting one element of sample_weight to 0 is equivalent to removing
# the corresponding sample
sample_weight = np.ones(y.shape)
sample_weight[-1] = 0
glm.fit(X, y, sample_weight=sample_weight)
coef1 = glm.coef_.copy()
glm.fit(X[:-1], y[:-1])
assert_allclose(glm.coef_, coef1, rtol=1e-12)
# check that multiplying sample_weight by 2 is equivalent
# to repeating corresponding samples twice
X2 = np.concatenate([X, X[: n_samples // 2]], axis=0)
y2 = np.concatenate([y, y[: n_samples // 2]])
sample_weight_1 = np.ones(len(y))
sample_weight_1[: n_samples // 2] = 2
glm1 = GLMEstimator(**glm_params).fit(X, y, sample_weight=sample_weight_1)
glm2 = GLMEstimator(**glm_params).fit(X2, y2, sample_weight=None)
assert_allclose(glm1.coef_, glm2.coef_)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize(
"estimator",
[
PoissonRegressor(),
GammaRegressor(),
TweedieRegressor(power=3.0),
TweedieRegressor(power=0, link="log"),
TweedieRegressor(power=1.5),
TweedieRegressor(power=4.5),
],
)
def test_glm_log_regression(solver, fit_intercept, estimator):
"""Test GLM regression with log link on a simple dataset."""
coef = [0.2, -0.1]
X = np.array([[0, 1, 2, 3, 4], [1, 1, 1, 1, 1]]).T
y = np.exp(np.dot(X, coef))
glm = clone(estimator).set_params(
alpha=0,
fit_intercept=fit_intercept,
solver=solver,
tol=1e-8,
)
if fit_intercept:
res = glm.fit(X[:, :-1], y)
assert_allclose(res.coef_, coef[:-1], rtol=1e-6)
assert_allclose(res.intercept_, coef[-1], rtol=1e-6)
else:
res = glm.fit(X, y)
assert_allclose(res.coef_, coef, rtol=2e-6)
@pytest.mark.parametrize("solver", SOLVERS)
@pytest.mark.parametrize("fit_intercept", [True, False])
def test_warm_start(solver, fit_intercept, global_random_seed):
n_samples, n_features = 100, 10
X, y = make_regression(
n_samples=n_samples,
n_features=n_features,
n_informative=n_features - 2,
bias=fit_intercept * 1.0,
noise=1.0,
random_state=global_random_seed,
)
y = np.abs(y) # Poisson requires non-negative targets.
alpha = 1
params = {
"solver": solver,
"fit_intercept": fit_intercept,
"tol": 1e-10,
}
glm1 = PoissonRegressor(warm_start=False, max_iter=1000, alpha=alpha, **params)
glm1.fit(X, y)
glm2 = PoissonRegressor(warm_start=True, max_iter=1, alpha=alpha, **params)
# As we intentionally set max_iter=1 such that the solver should raise a
# ConvergenceWarning.
with pytest.warns(ConvergenceWarning):
glm2.fit(X, y)
linear_loss = LinearModelLoss(
base_loss=glm1._get_loss(),
fit_intercept=fit_intercept,
)
sw = np.full_like(y, fill_value=1 / n_samples)
objective_glm1 = linear_loss.loss(
coef=np.r_[glm1.coef_, glm1.intercept_] if fit_intercept else glm1.coef_,
X=X,
y=y,
sample_weight=sw,
l2_reg_strength=alpha,
)
objective_glm2 = linear_loss.loss(
coef=np.r_[glm2.coef_, glm2.intercept_] if fit_intercept else glm2.coef_,
X=X,
y=y,
sample_weight=sw,
l2_reg_strength=alpha,
)
assert objective_glm1 < objective_glm2
glm2.set_params(max_iter=1000)
glm2.fit(X, y)
# The two models are not exactly identical since the lbfgs solver
# computes the approximate hessian from previous iterations, which
# will not be strictly identical in the case of a warm start.
rtol = 2e-4 if solver == "lbfgs" else 1e-9
assert_allclose(glm1.coef_, glm2.coef_, rtol=rtol)
assert_allclose(glm1.score(X, y), glm2.score(X, y), rtol=1e-5)
@pytest.mark.parametrize("n_samples, n_features", [(100, 10), (10, 100)])
@pytest.mark.parametrize("fit_intercept", [True, False])
@pytest.mark.parametrize("sample_weight", [None, True])
def test_normal_ridge_comparison(
n_samples, n_features, fit_intercept, sample_weight, request
):
"""Compare with Ridge regression for Normal distributions."""
test_size = 10
X, y = make_regression(
n_samples=n_samples + test_size,
n_features=n_features,
n_informative=n_features - 2,
noise=0.5,
random_state=42,
)
if n_samples > n_features:
ridge_params = {"solver": "svd"}
else:
ridge_params = {"solver": "saga", "max_iter": 1000000, "tol": 1e-7}
(
X_train,
X_test,
y_train,
y_test,
) = train_test_split(X, y, test_size=test_size, random_state=0)
alpha = 1.0
if sample_weight is None:
sw_train = None
alpha_ridge = alpha * n_samples
else:
sw_train = np.random.RandomState(0).rand(len(y_train))
alpha_ridge = alpha * sw_train.sum()
# GLM has 1/(2*n) * Loss + 1/2*L2, Ridge has Loss + L2
ridge = Ridge(
alpha=alpha_ridge,
random_state=42,
fit_intercept=fit_intercept,
**ridge_params,
)
ridge.fit(X_train, y_train, sample_weight=sw_train)
glm = _GeneralizedLinearRegressor(
alpha=alpha,
fit_intercept=fit_intercept,
max_iter=300,
tol=1e-5,
)
glm.fit(X_train, y_train, sample_weight=sw_train)
assert glm.coef_.shape == (X.shape[1],)
assert_allclose(glm.coef_, ridge.coef_, atol=5e-5)
assert_allclose(glm.intercept_, ridge.intercept_, rtol=1e-5)
assert_allclose(glm.predict(X_train), ridge.predict(X_train), rtol=2e-4)
assert_allclose(glm.predict(X_test), ridge.predict(X_test), rtol=2e-4)
@pytest.mark.parametrize("solver", ["lbfgs", "newton-cholesky"])
def test_poisson_glmnet(solver):
"""Compare Poisson regression with L2 regularization and LogLink to glmnet"""
# library("glmnet")
# options(digits=10)
# df <- data.frame(a=c(-2,-1,1,2), b=c(0,0,1,1), y=c(0,1,1,2))
# x <- data.matrix(df[,c("a", "b")])
# y <- df$y
# fit <- glmnet(x=x, y=y, alpha=0, intercept=T, family="poisson",
# standardize=F, thresh=1e-10, nlambda=10000)
# coef(fit, s=1)
# (Intercept) -0.12889386979
# a 0.29019207995
# b 0.03741173122
X = np.array([[-2, -1, 1, 2], [0, 0, 1, 1]]).T
y = np.array([0, 1, 1, 2])
glm = PoissonRegressor(
alpha=1,
fit_intercept=True,
tol=1e-7,
max_iter=300,
solver=solver,
)
glm.fit(X, y)
assert_allclose(glm.intercept_, -0.12889386979, rtol=1e-5)
assert_allclose(glm.coef_, [0.29019207995, 0.03741173122], rtol=1e-5)
def test_convergence_warning(regression_data):
X, y = regression_data
est = _GeneralizedLinearRegressor(max_iter=1, tol=1e-20)
with pytest.warns(ConvergenceWarning):
est.fit(X, y)
@pytest.mark.parametrize(
"name, link_class", [("identity", IdentityLink), ("log", LogLink)]
)
def test_tweedie_link_argument(name, link_class):
"""Test GLM link argument set as string."""
y = np.array([0.1, 0.5]) # in range of all distributions
X = np.array([[1], [2]])
glm = TweedieRegressor(power=1, link=name).fit(X, y)
assert isinstance(glm._base_loss.link, link_class)
@pytest.mark.parametrize(
"power, expected_link_class",
[
(0, IdentityLink), # normal
(1, LogLink), # poisson
(2, LogLink), # gamma
(3, LogLink), # inverse-gaussian
],
)
def test_tweedie_link_auto(power, expected_link_class):
"""Test that link='auto' delivers the expected link function"""
y = np.array([0.1, 0.5]) # in range of all distributions
X = np.array([[1], [2]])
glm = TweedieRegressor(link="auto", power=power).fit(X, y)
assert isinstance(glm._base_loss.link, expected_link_class)
@pytest.mark.parametrize("power", [0, 1, 1.5, 2, 3])
@pytest.mark.parametrize("link", ["log", "identity"])
def test_tweedie_score(regression_data, power, link):
"""Test that GLM score equals d2_tweedie_score for Tweedie losses."""
X, y = regression_data
# make y positive
y = np.abs(y) + 1.0
glm = TweedieRegressor(power=power, link=link).fit(X, y)
assert glm.score(X, y) == pytest.approx(
d2_tweedie_score(y, glm.predict(X), power=power)
)
@pytest.mark.parametrize(
"estimator, value",
[
(PoissonRegressor(), True),
(GammaRegressor(), True),
(TweedieRegressor(power=1.5), True),
(TweedieRegressor(power=0), False),
],
)
def test_tags(estimator, value):
assert estimator._get_tags()["requires_positive_y"] is value
# TODO(1.3): remove
@pytest.mark.parametrize(
"est, family",
[
(PoissonRegressor(), "poisson"),
(GammaRegressor(), "gamma"),
(TweedieRegressor(), TweedieDistribution()),
(TweedieRegressor(power=2), TweedieDistribution(power=2)),
(TweedieRegressor(power=3), TweedieDistribution(power=3)),
],
)
def test_family_deprecation(est, family):
"""Test backward compatibility of the family property."""
with pytest.warns(FutureWarning, match="`family` was deprecated"):
if isinstance(family, str):
assert est.family == family
else:
assert est.family.__class__ == family.__class__
assert est.family.power == family.power
def test_linalg_warning_with_newton_solver(global_random_seed):
newton_solver = "newton-cholesky"
rng = np.random.RandomState(global_random_seed)
# Use at least 20 samples to reduce the likelihood of getting a degenerate
# dataset for any global_random_seed.
X_orig = rng.normal(size=(20, 3))
y = rng.poisson(
np.exp(X_orig @ np.ones(X_orig.shape[1])), size=X_orig.shape[0]
).astype(np.float64)
# Collinear variation of the same input features.
X_collinear = np.hstack([X_orig] * 10)
# Let's consider the deviance of a constant baseline on this problem.
baseline_pred = np.full_like(y, y.mean())
constant_model_deviance = mean_poisson_deviance(y, baseline_pred)
assert constant_model_deviance > 1.0
# No warning raised on well-conditioned design, even without regularization.
tol = 1e-10
with warnings.catch_warnings():
warnings.simplefilter("error")
reg = PoissonRegressor(solver=newton_solver, alpha=0.0, tol=tol).fit(X_orig, y)
original_newton_deviance = mean_poisson_deviance(y, reg.predict(X_orig))
# On this dataset, we should have enough data points to not make it
# possible to get a near zero deviance (for the any of the admissible
# random seeds). This will make it easier to interpret meaning of rtol in
# the subsequent assertions:
assert original_newton_deviance > 0.2
# We check that the model could successfully fit information in X_orig to
# improve upon the constant baseline by a large margin (when evaluated on
# the traing set).
assert constant_model_deviance - original_newton_deviance > 0.1
# LBFGS is robust to a collinear design because its approximation of the
# Hessian is Symmeric Positive Definite by construction. Let's record its
# solution
with warnings.catch_warnings():
warnings.simplefilter("error")
reg = PoissonRegressor(solver="lbfgs", alpha=0.0, tol=tol).fit(X_collinear, y)
collinear_lbfgs_deviance = mean_poisson_deviance(y, reg.predict(X_collinear))
# The LBFGS solution on the collinear is expected to reach a comparable
# solution to the Newton solution on the original data.
rtol = 1e-6
assert collinear_lbfgs_deviance == pytest.approx(original_newton_deviance, rel=rtol)
# Fitting a Newton solver on the collinear version of the training data
# without regularization should raise an informative warning and fallback
# to the LBFGS solver.
msg = (
"The inner solver of .*Newton.*Solver stumbled upon a singular or very "
"ill-conditioned Hessian matrix"
)
with pytest.warns(scipy.linalg.LinAlgWarning, match=msg):
reg = PoissonRegressor(solver=newton_solver, alpha=0.0, tol=tol).fit(
X_collinear, y
)
# As a result we should still automatically converge to a good solution.
collinear_newton_deviance = mean_poisson_deviance(y, reg.predict(X_collinear))
assert collinear_newton_deviance == pytest.approx(
original_newton_deviance, rel=rtol
)
# Increasing the regularization slightly should make the problem go away:
with warnings.catch_warnings():
warnings.simplefilter("error", scipy.linalg.LinAlgWarning)
reg = PoissonRegressor(solver=newton_solver, alpha=1e-10).fit(X_collinear, y)
# The slightly penalized model on the collinear data should be close enough
# to the unpenalized model on the original data.
penalized_collinear_newton_deviance = mean_poisson_deviance(
y, reg.predict(X_collinear)
)
assert penalized_collinear_newton_deviance == pytest.approx(
original_newton_deviance, rel=rtol
)
@pytest.mark.parametrize("verbose", [0, 1, 2])
def test_newton_solver_verbosity(capsys, verbose):
"""Test the std output of verbose newton solvers."""
y = np.array([1, 2], dtype=float)
X = np.array([[1.0, 0], [0, 1]], dtype=float)
linear_loss = LinearModelLoss(base_loss=HalfPoissonLoss(), fit_intercept=False)
sol = NewtonCholeskySolver(
coef=linear_loss.init_zero_coef(X),
linear_loss=linear_loss,
l2_reg_strength=0,
verbose=verbose,
)
sol.solve(X, y, None) # returns array([0., 0.69314758])
captured = capsys.readouterr()
if verbose == 0:
assert captured.out == ""
else:
msg = [
"Newton iter=1",
"Check Convergence",
"1. max |gradient|",
"2. Newton decrement",
"Solver did converge at loss = ",
]
for m in msg:
assert m in captured.out
if verbose >= 2:
msg = ["Backtracking Line Search", "line search iteration="]
for m in msg:
assert m in captured.out
# Set the Newton solver to a state with a completely wrong Newton step.
sol = NewtonCholeskySolver(
coef=linear_loss.init_zero_coef(X),
linear_loss=linear_loss,
l2_reg_strength=0,
verbose=verbose,
)
sol.setup(X=X, y=y, sample_weight=None)
sol.iteration = 1
sol.update_gradient_hessian(X=X, y=y, sample_weight=None)
sol.coef_newton = np.array([1.0, 0])
sol.gradient_times_newton = sol.gradient @ sol.coef_newton
with warnings.catch_warnings():
warnings.simplefilter("ignore", ConvergenceWarning)
sol.line_search(X=X, y=y, sample_weight=None)
captured = capsys.readouterr()
if verbose >= 1:
assert (
"Line search did not converge and resorts to lbfgs instead." in captured.out
)
# Set the Newton solver to a state with bad Newton step such that the loss
# improvement in line search is tiny.
sol = NewtonCholeskySolver(
coef=np.array([1e-12, 0.69314758]),
linear_loss=linear_loss,
l2_reg_strength=0,
verbose=verbose,
)
sol.setup(X=X, y=y, sample_weight=None)
sol.iteration = 1
sol.update_gradient_hessian(X=X, y=y, sample_weight=None)
sol.coef_newton = np.array([1e-6, 0])
sol.gradient_times_newton = sol.gradient @ sol.coef_newton
with warnings.catch_warnings():
warnings.simplefilter("ignore", ConvergenceWarning)
sol.line_search(X=X, y=y, sample_weight=None)
captured = capsys.readouterr()
if verbose >= 2:
msg = [
"line search iteration=",
"check loss improvement <= armijo term:",
"check loss |improvement| <= eps * |loss_old|:",
"check sum(|gradient|) < sum(|gradient_old|):",
]
for m in msg:
assert m in captured.out
# Test for a case with negative hessian. We badly initialize coef for a Tweedie
# loss with non-canonical link, e.g. Inverse Gaussian deviance with a log link.
linear_loss = LinearModelLoss(
base_loss=HalfTweedieLoss(power=3), fit_intercept=False
)
sol = NewtonCholeskySolver(
coef=linear_loss.init_zero_coef(X) + 1,
linear_loss=linear_loss,
l2_reg_strength=0,
verbose=verbose,
)
with warnings.catch_warnings():
warnings.simplefilter("ignore", ConvergenceWarning)
sol.solve(X, y, None)
captured = capsys.readouterr()
if verbose >= 1:
assert (
"The inner solver detected a pointwise Hessian with many negative values"
" and resorts to lbfgs instead."
in captured.out
)