Intelegentny_Pszczelarz/.venv/Lib/site-packages/joblib/memory.py
2023-06-19 00:49:18 +02:00

1031 lines
40 KiB
Python

"""
A context object for caching a function's return value each time it
is called with the same input arguments.
"""
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
# Copyright (c) 2009 Gael Varoquaux
# License: BSD Style, 3 clauses.
from __future__ import with_statement
import os
import time
import pathlib
import pydoc
import re
import functools
import traceback
import warnings
import inspect
import weakref
from tokenize import open as open_py_source
# Local imports
from . import hashing
from .func_inspect import get_func_code, get_func_name, filter_args
from .func_inspect import format_call
from .func_inspect import format_signature
from .logger import Logger, format_time, pformat
from ._store_backends import StoreBackendBase, FileSystemStoreBackend
FIRST_LINE_TEXT = "# first line:"
# TODO: The following object should have a data store object as a sub
# object, and the interface to persist and query should be separated in
# the data store.
#
# This would enable creating 'Memory' objects with a different logic for
# pickling that would simply span a MemorizedFunc with the same
# store (or do we want to copy it to avoid cross-talks?), for instance to
# implement HDF5 pickling.
# TODO: Same remark for the logger, and probably use the Python logging
# mechanism.
def extract_first_line(func_code):
""" Extract the first line information from the function code
text if available.
"""
if func_code.startswith(FIRST_LINE_TEXT):
func_code = func_code.split('\n')
first_line = int(func_code[0][len(FIRST_LINE_TEXT):])
func_code = '\n'.join(func_code[1:])
else:
first_line = -1
return func_code, first_line
class JobLibCollisionWarning(UserWarning):
""" Warn that there might be a collision between names of functions.
"""
_STORE_BACKENDS = {'local': FileSystemStoreBackend}
def register_store_backend(backend_name, backend):
"""Extend available store backends.
The Memory, MemorizeResult and MemorizeFunc objects are designed to be
agnostic to the type of store used behind. By default, the local file
system is used but this function gives the possibility to extend joblib's
memory pattern with other types of storage such as cloud storage (S3, GCS,
OpenStack, HadoopFS, etc) or blob DBs.
Parameters
----------
backend_name: str
The name identifying the store backend being registered. For example,
'local' is used with FileSystemStoreBackend.
backend: StoreBackendBase subclass
The name of a class that implements the StoreBackendBase interface.
"""
if not isinstance(backend_name, str):
raise ValueError("Store backend name should be a string, "
"'{0}' given.".format(backend_name))
if backend is None or not issubclass(backend, StoreBackendBase):
raise ValueError("Store backend should inherit "
"StoreBackendBase, "
"'{0}' given.".format(backend))
_STORE_BACKENDS[backend_name] = backend
def _store_backend_factory(backend, location, verbose=0, backend_options=None):
"""Return the correct store object for the given location."""
if backend_options is None:
backend_options = {}
if isinstance(location, pathlib.Path):
location = str(location)
if isinstance(location, StoreBackendBase):
return location
elif isinstance(location, str):
obj = None
location = os.path.expanduser(location)
# The location is not a local file system, we look in the
# registered backends if there's one matching the given backend
# name.
for backend_key, backend_obj in _STORE_BACKENDS.items():
if backend == backend_key:
obj = backend_obj()
# By default, we assume the FileSystemStoreBackend can be used if no
# matching backend could be found.
if obj is None:
raise TypeError('Unknown location {0} or backend {1}'.format(
location, backend))
# The store backend is configured with the extra named parameters,
# some of them are specific to the underlying store backend.
obj.configure(location, verbose=verbose,
backend_options=backend_options)
return obj
elif location is not None:
warnings.warn(
"Instantiating a backend using a {} as a location is not "
"supported by joblib. Returning None instead.".format(
location.__class__.__name__), UserWarning)
return None
def _get_func_fullname(func):
"""Compute the part of part associated with a function."""
modules, funcname = get_func_name(func)
modules.append(funcname)
return os.path.join(*modules)
def _build_func_identifier(func):
"""Build a roughly unique identifier for the cached function."""
parts = []
if isinstance(func, str):
parts.append(func)
else:
parts.append(_get_func_fullname(func))
# We reuse historical fs-like way of building a function identifier
return os.path.join(*parts)
def _format_load_msg(func_id, args_id, timestamp=None, metadata=None):
""" Helper function to format the message when loading the results.
"""
signature = ""
try:
if metadata is not None:
args = ", ".join(['%s=%s' % (name, value)
for name, value
in metadata['input_args'].items()])
signature = "%s(%s)" % (os.path.basename(func_id), args)
else:
signature = os.path.basename(func_id)
except KeyError:
pass
if timestamp is not None:
ts_string = "{0: <16}".format(format_time(time.time() - timestamp))
else:
ts_string = ""
return '[Memory]{0}: Loading {1}'.format(ts_string, str(signature))
# An in-memory store to avoid looking at the disk-based function
# source code to check if a function definition has changed
_FUNCTION_HASHES = weakref.WeakKeyDictionary()
###############################################################################
# class `MemorizedResult`
###############################################################################
class MemorizedResult(Logger):
"""Object representing a cached value.
Attributes
----------
location: str
The location of joblib cache. Depends on the store backend used.
func: function or str
function whose output is cached. The string case is intended only for
instantiation based on the output of repr() on another instance.
(namely eval(repr(memorized_instance)) works).
argument_hash: str
hash of the function arguments.
backend: str
Type of store backend for reading/writing cache files.
Default is 'local'.
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}
The memmapping mode used when loading from cache numpy arrays. See
numpy.load for the meaning of the different values.
verbose: int
verbosity level (0 means no message).
timestamp, metadata: string
for internal use only.
"""
def __init__(self, location, func, args_id, backend='local',
mmap_mode=None, verbose=0, timestamp=None, metadata=None):
Logger.__init__(self)
self.func_id = _build_func_identifier(func)
if isinstance(func, str):
self.func = func
else:
self.func = self.func_id
self.args_id = args_id
self.store_backend = _store_backend_factory(backend, location,
verbose=verbose)
self.mmap_mode = mmap_mode
if metadata is not None:
self.metadata = metadata
else:
self.metadata = self.store_backend.get_metadata(
[self.func_id, self.args_id])
self.duration = self.metadata.get('duration', None)
self.verbose = verbose
self.timestamp = timestamp
@property
def argument_hash(self):
warnings.warn(
"The 'argument_hash' attribute has been deprecated in version "
"0.12 and will be removed in version 0.14.\n"
"Use `args_id` attribute instead.",
DeprecationWarning, stacklevel=2)
return self.args_id
def get(self):
"""Read value from cache and return it."""
if self.verbose:
msg = _format_load_msg(self.func_id, self.args_id,
timestamp=self.timestamp,
metadata=self.metadata)
else:
msg = None
try:
return self.store_backend.load_item(
[self.func_id, self.args_id], msg=msg, verbose=self.verbose)
except ValueError as exc:
new_exc = KeyError(
"Error while trying to load a MemorizedResult's value. "
"It seems that this folder is corrupted : {}".format(
os.path.join(
self.store_backend.location, self.func_id,
self.args_id)
))
raise new_exc from exc
def clear(self):
"""Clear value from cache"""
self.store_backend.clear_item([self.func_id, self.args_id])
def __repr__(self):
return ('{class_name}(location="{location}", func="{func}", '
'args_id="{args_id}")'
.format(class_name=self.__class__.__name__,
location=self.store_backend.location,
func=self.func,
args_id=self.args_id
))
def __getstate__(self):
state = self.__dict__.copy()
state['timestamp'] = None
return state
class NotMemorizedResult(object):
"""Class representing an arbitrary value.
This class is a replacement for MemorizedResult when there is no cache.
"""
__slots__ = ('value', 'valid')
def __init__(self, value):
self.value = value
self.valid = True
def get(self):
if self.valid:
return self.value
else:
raise KeyError("No value stored.")
def clear(self):
self.valid = False
self.value = None
def __repr__(self):
if self.valid:
return ('{class_name}({value})'
.format(class_name=self.__class__.__name__,
value=pformat(self.value)))
else:
return self.__class__.__name__ + ' with no value'
# __getstate__ and __setstate__ are required because of __slots__
def __getstate__(self):
return {"valid": self.valid, "value": self.value}
def __setstate__(self, state):
self.valid = state["valid"]
self.value = state["value"]
###############################################################################
# class `NotMemorizedFunc`
###############################################################################
class NotMemorizedFunc(object):
"""No-op object decorating a function.
This class replaces MemorizedFunc when there is no cache. It provides an
identical API but does not write anything on disk.
Attributes
----------
func: callable
Original undecorated function.
"""
# Should be a light as possible (for speed)
def __init__(self, func):
self.func = func
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
def call_and_shelve(self, *args, **kwargs):
return NotMemorizedResult(self.func(*args, **kwargs))
def __repr__(self):
return '{0}(func={1})'.format(self.__class__.__name__, self.func)
def clear(self, warn=True):
# Argument "warn" is for compatibility with MemorizedFunc.clear
pass
def call(self, *args, **kwargs):
return self.func(*args, **kwargs)
def check_call_in_cache(self, *args, **kwargs):
return False
###############################################################################
# class `MemorizedFunc`
###############################################################################
class MemorizedFunc(Logger):
"""Callable object decorating a function for caching its return value
each time it is called.
Methods are provided to inspect the cache or clean it.
Attributes
----------
func: callable
The original, undecorated, function.
location: string
The location of joblib cache. Depends on the store backend used.
backend: str
Type of store backend for reading/writing cache files.
Default is 'local', in which case the location is the path to a
disk storage.
ignore: list or None
List of variable names to ignore when choosing whether to
recompute.
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}
The memmapping mode used when loading from cache
numpy arrays. See numpy.load for the meaning of the different
values.
compress: boolean, or integer
Whether to zip the stored data on disk. If an integer is
given, it should be between 1 and 9, and sets the amount
of compression. Note that compressed arrays cannot be
read by memmapping.
verbose: int, optional
The verbosity flag, controls messages that are issued as
the function is evaluated.
"""
# ------------------------------------------------------------------------
# Public interface
# ------------------------------------------------------------------------
def __init__(self, func, location, backend='local', ignore=None,
mmap_mode=None, compress=False, verbose=1, timestamp=None):
Logger.__init__(self)
self.mmap_mode = mmap_mode
self.compress = compress
self.func = func
if ignore is None:
ignore = []
self.ignore = ignore
self._verbose = verbose
# retrieve store object from backend type and location.
self.store_backend = _store_backend_factory(backend, location,
verbose=verbose,
backend_options=dict(
compress=compress,
mmap_mode=mmap_mode),
)
if self.store_backend is not None:
# Create func directory on demand.
self.store_backend.\
store_cached_func_code([_build_func_identifier(self.func)])
if timestamp is None:
timestamp = time.time()
self.timestamp = timestamp
try:
functools.update_wrapper(self, func)
except:
" Objects like ufunc don't like that "
if inspect.isfunction(func):
doc = pydoc.TextDoc().document(func)
# Remove blank line
doc = doc.replace('\n', '\n\n', 1)
# Strip backspace-overprints for compatibility with autodoc
doc = re.sub('\x08.', '', doc)
else:
# Pydoc does a poor job on other objects
doc = func.__doc__
self.__doc__ = 'Memoized version of %s' % doc
self._func_code_info = None
self._func_code_id = None
def _cached_call(self, args, kwargs, shelving=False):
"""Call wrapped function and cache result, or read cache if available.
This function returns the wrapped function output and some metadata.
Arguments:
----------
args, kwargs: list and dict
input arguments for wrapped function
shelving: bool
True when called via the call_and_shelve function.
Returns
-------
output: value or tuple or None
Output of the wrapped function.
If shelving is True and the call has been already cached,
output is None.
argument_hash: string
Hash of function arguments.
metadata: dict
Some metadata about wrapped function call (see _persist_input()).
"""
func_id, args_id = self._get_output_identifiers(*args, **kwargs)
metadata = None
msg = None
# Whether or not the memorized function must be called
must_call = False
# FIXME: The statements below should be try/excepted
# Compare the function code with the previous to see if the
# function code has changed
if not (self._check_previous_func_code(stacklevel=4) and
self.store_backend.contains_item([func_id, args_id])):
if self._verbose > 10:
_, name = get_func_name(self.func)
self.warn('Computing func {0}, argument hash {1} '
'in location {2}'
.format(name, args_id,
self.store_backend.
get_cached_func_info([func_id])['location']))
must_call = True
else:
try:
t0 = time.time()
if self._verbose:
msg = _format_load_msg(func_id, args_id,
timestamp=self.timestamp,
metadata=metadata)
if not shelving:
# When shelving, we do not need to load the output
out = self.store_backend.load_item(
[func_id, args_id],
msg=msg,
verbose=self._verbose)
else:
out = None
if self._verbose > 4:
t = time.time() - t0
_, name = get_func_name(self.func)
msg = '%s cache loaded - %s' % (name, format_time(t))
print(max(0, (80 - len(msg))) * '_' + msg)
except Exception:
# XXX: Should use an exception logger
_, signature = format_signature(self.func, *args, **kwargs)
self.warn('Exception while loading results for '
'{}\n {}'.format(signature, traceback.format_exc()))
must_call = True
if must_call:
out, metadata = self.call(*args, **kwargs)
if self.mmap_mode is not None:
# Memmap the output at the first call to be consistent with
# later calls
if self._verbose:
msg = _format_load_msg(func_id, args_id,
timestamp=self.timestamp,
metadata=metadata)
out = self.store_backend.load_item([func_id, args_id], msg=msg,
verbose=self._verbose)
return (out, args_id, metadata)
@property
def func_code_info(self):
# 3-tuple property containing: the function source code, source file,
# and first line of the code inside the source file
if hasattr(self.func, '__code__'):
if self._func_code_id is None:
self._func_code_id = id(self.func.__code__)
elif id(self.func.__code__) != self._func_code_id:
# Be robust to dynamic reassignments of self.func.__code__
self._func_code_info = None
if self._func_code_info is None:
# Cache the source code of self.func . Provided that get_func_code
# (which should be called once on self) gets called in the process
# in which self.func was defined, this caching mechanism prevents
# undesired cache clearing when the cached function is called in
# an environment where the introspection utilities get_func_code
# relies on do not work (typically, in joblib child processes).
# See #1035 for more info
# TODO (pierreglaser): do the same with get_func_name?
self._func_code_info = get_func_code(self.func)
return self._func_code_info
def call_and_shelve(self, *args, **kwargs):
"""Call wrapped function, cache result and return a reference.
This method returns a reference to the cached result instead of the
result itself. The reference object is small and pickeable, allowing
to send or store it easily. Call .get() on reference object to get
result.
Returns
-------
cached_result: MemorizedResult or NotMemorizedResult
reference to the value returned by the wrapped function. The
class "NotMemorizedResult" is used when there is no cache
activated (e.g. location=None in Memory).
"""
_, args_id, metadata = self._cached_call(args, kwargs, shelving=True)
return MemorizedResult(self.store_backend, self.func, args_id,
metadata=metadata, verbose=self._verbose - 1,
timestamp=self.timestamp)
def __call__(self, *args, **kwargs):
return self._cached_call(args, kwargs)[0]
def __getstate__(self):
# Make sure self.func's source is introspected prior to being pickled -
# code introspection utilities typically do not work inside child
# processes
_ = self.func_code_info
# We don't store the timestamp when pickling, to avoid the hash
# depending from it.
state = self.__dict__.copy()
state['timestamp'] = None
# Invalidate the code id as id(obj) will be different in the child
state['_func_code_id'] = None
return state
def check_call_in_cache(self, *args, **kwargs):
"""Check if function call is in the memory cache.
Does not call the function or do any work besides func inspection
and arg hashing.
Returns
-------
is_call_in_cache: bool
Whether or not the result of the function has been cached
for the input arguments that have been passed.
"""
func_id, args_id = self._get_output_identifiers(*args, **kwargs)
return self.store_backend.contains_item((func_id, args_id))
# ------------------------------------------------------------------------
# Private interface
# ------------------------------------------------------------------------
def _get_argument_hash(self, *args, **kwargs):
return hashing.hash(filter_args(self.func, self.ignore, args, kwargs),
coerce_mmap=(self.mmap_mode is not None))
def _get_output_identifiers(self, *args, **kwargs):
"""Return the func identifier and input parameter hash of a result."""
func_id = _build_func_identifier(self.func)
argument_hash = self._get_argument_hash(*args, **kwargs)
return func_id, argument_hash
def _hash_func(self):
"""Hash a function to key the online cache"""
func_code_h = hash(getattr(self.func, '__code__', None))
return id(self.func), hash(self.func), func_code_h
def _write_func_code(self, func_code, first_line):
""" Write the function code and the filename to a file.
"""
# We store the first line because the filename and the function
# name is not always enough to identify a function: people
# sometimes have several functions named the same way in a
# file. This is bad practice, but joblib should be robust to bad
# practice.
func_id = _build_func_identifier(self.func)
func_code = u'%s %i\n%s' % (FIRST_LINE_TEXT, first_line, func_code)
self.store_backend.store_cached_func_code([func_id], func_code)
# Also store in the in-memory store of function hashes
is_named_callable = False
is_named_callable = (hasattr(self.func, '__name__') and
self.func.__name__ != '<lambda>')
if is_named_callable:
# Don't do this for lambda functions or strange callable
# objects, as it ends up being too fragile
func_hash = self._hash_func()
try:
_FUNCTION_HASHES[self.func] = func_hash
except TypeError:
# Some callable are not hashable
pass
def _check_previous_func_code(self, stacklevel=2):
"""
stacklevel is the depth a which this function is called, to
issue useful warnings to the user.
"""
# First check if our function is in the in-memory store.
# Using the in-memory store not only makes things faster, but it
# also renders us robust to variations of the files when the
# in-memory version of the code does not vary
try:
if self.func in _FUNCTION_HASHES:
# We use as an identifier the id of the function and its
# hash. This is more likely to falsely change than have hash
# collisions, thus we are on the safe side.
func_hash = self._hash_func()
if func_hash == _FUNCTION_HASHES[self.func]:
return True
except TypeError:
# Some callables are not hashable
pass
# Here, we go through some effort to be robust to dynamically
# changing code and collision. We cannot inspect.getsource
# because it is not reliable when using IPython's magic "%run".
func_code, source_file, first_line = self.func_code_info
func_id = _build_func_identifier(self.func)
try:
old_func_code, old_first_line =\
extract_first_line(
self.store_backend.get_cached_func_code([func_id]))
except (IOError, OSError): # some backend can also raise OSError
self._write_func_code(func_code, first_line)
return False
if old_func_code == func_code:
return True
# We have differing code, is this because we are referring to
# different functions, or because the function we are referring to has
# changed?
_, func_name = get_func_name(self.func, resolv_alias=False,
win_characters=False)
if old_first_line == first_line == -1 or func_name == '<lambda>':
if not first_line == -1:
func_description = ("{0} ({1}:{2})"
.format(func_name, source_file,
first_line))
else:
func_description = func_name
warnings.warn(JobLibCollisionWarning(
"Cannot detect name collisions for function '{0}'"
.format(func_description)), stacklevel=stacklevel)
# Fetch the code at the old location and compare it. If it is the
# same than the code store, we have a collision: the code in the
# file has not changed, but the name we have is pointing to a new
# code block.
if not old_first_line == first_line and source_file is not None:
possible_collision = False
if os.path.exists(source_file):
_, func_name = get_func_name(self.func, resolv_alias=False)
num_lines = len(func_code.split('\n'))
with open_py_source(source_file) as f:
on_disk_func_code = f.readlines()[
old_first_line - 1:old_first_line - 1 + num_lines - 1]
on_disk_func_code = ''.join(on_disk_func_code)
possible_collision = (on_disk_func_code.rstrip() ==
old_func_code.rstrip())
else:
possible_collision = source_file.startswith('<doctest ')
if possible_collision:
warnings.warn(JobLibCollisionWarning(
'Possible name collisions between functions '
"'%s' (%s:%i) and '%s' (%s:%i)" %
(func_name, source_file, old_first_line,
func_name, source_file, first_line)),
stacklevel=stacklevel)
# The function has changed, wipe the cache directory.
# XXX: Should be using warnings, and giving stacklevel
if self._verbose > 10:
_, func_name = get_func_name(self.func, resolv_alias=False)
self.warn("Function {0} (identified by {1}) has changed"
".".format(func_name, func_id))
self.clear(warn=True)
return False
def clear(self, warn=True):
"""Empty the function's cache."""
func_id = _build_func_identifier(self.func)
if self._verbose > 0 and warn:
self.warn("Clearing function cache identified by %s" % func_id)
self.store_backend.clear_path([func_id, ])
func_code, _, first_line = self.func_code_info
self._write_func_code(func_code, first_line)
def call(self, *args, **kwargs):
""" Force the execution of the function with the given arguments and
persist the output values.
"""
start_time = time.time()
func_id, args_id = self._get_output_identifiers(*args, **kwargs)
if self._verbose > 0:
print(format_call(self.func, args, kwargs))
output = self.func(*args, **kwargs)
self.store_backend.dump_item(
[func_id, args_id], output, verbose=self._verbose)
duration = time.time() - start_time
metadata = self._persist_input(duration, args, kwargs)
if self._verbose > 0:
_, name = get_func_name(self.func)
msg = '%s - %s' % (name, format_time(duration))
print(max(0, (80 - len(msg))) * '_' + msg)
return output, metadata
def _persist_input(self, duration, args, kwargs, this_duration_limit=0.5):
""" Save a small summary of the call using json format in the
output directory.
output_dir: string
directory where to write metadata.
duration: float
time taken by hashing input arguments, calling the wrapped
function and persisting its output.
args, kwargs: list and dict
input arguments for wrapped function
this_duration_limit: float
Max execution time for this function before issuing a warning.
"""
start_time = time.time()
argument_dict = filter_args(self.func, self.ignore,
args, kwargs)
input_repr = dict((k, repr(v)) for k, v in argument_dict.items())
# This can fail due to race-conditions with multiple
# concurrent joblibs removing the file or the directory
metadata = {"duration": duration, "input_args": input_repr}
func_id, args_id = self._get_output_identifiers(*args, **kwargs)
self.store_backend.store_metadata([func_id, args_id], metadata)
this_duration = time.time() - start_time
if this_duration > this_duration_limit:
# This persistence should be fast. It will not be if repr() takes
# time and its output is large, because json.dump will have to
# write a large file. This should not be an issue with numpy arrays
# for which repr() always output a short representation, but can
# be with complex dictionaries. Fixing the problem should be a
# matter of replacing repr() above by something smarter.
warnings.warn("Persisting input arguments took %.2fs to run.\n"
"If this happens often in your code, it can cause "
"performance problems \n"
"(results will be correct in all cases). \n"
"The reason for this is probably some large input "
"arguments for a wrapped\n"
" function (e.g. large strings).\n"
"THIS IS A JOBLIB ISSUE. If you can, kindly provide "
"the joblib's team with an\n"
" example so that they can fix the problem."
% this_duration, stacklevel=5)
return metadata
# ------------------------------------------------------------------------
# Private `object` interface
# ------------------------------------------------------------------------
def __repr__(self):
return '{class_name}(func={func}, location={location})'.format(
class_name=self.__class__.__name__,
func=self.func,
location=self.store_backend.location,)
###############################################################################
# class `Memory`
###############################################################################
class Memory(Logger):
""" A context object for caching a function's return value each time it
is called with the same input arguments.
All values are cached on the filesystem, in a deep directory
structure.
Read more in the :ref:`User Guide <memory>`.
Parameters
----------
location: str, pathlib.Path or None
The path of the base directory to use as a data store
or None. If None is given, no caching is done and
the Memory object is completely transparent. This option
replaces cachedir since version 0.12.
backend: str, optional
Type of store backend for reading/writing cache files.
Default: 'local'.
The 'local' backend is using regular filesystem operations to
manipulate data (open, mv, etc) in the backend.
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional
The memmapping mode used when loading from cache
numpy arrays. See numpy.load for the meaning of the
arguments.
compress: boolean, or integer, optional
Whether to zip the stored data on disk. If an integer is
given, it should be between 1 and 9, and sets the amount
of compression. Note that compressed arrays cannot be
read by memmapping.
verbose: int, optional
Verbosity flag, controls the debug messages that are issued
as functions are evaluated.
bytes_limit: int, optional
Limit in bytes of the size of the cache. By default, the size of
the cache is unlimited. When reducing the size of the cache,
``joblib`` keeps the most recently accessed items first.
**Note:** You need to call :meth:`joblib.Memory.reduce_size` to
actually reduce the cache size to be less than ``bytes_limit``.
backend_options: dict, optional
Contains a dictionary of named parameters used to configure
the store backend.
"""
# ------------------------------------------------------------------------
# Public interface
# ------------------------------------------------------------------------
def __init__(self, location=None, backend='local',
mmap_mode=None, compress=False, verbose=1, bytes_limit=None,
backend_options=None):
Logger.__init__(self)
self._verbose = verbose
self.mmap_mode = mmap_mode
self.timestamp = time.time()
self.bytes_limit = bytes_limit
self.backend = backend
self.compress = compress
if backend_options is None:
backend_options = {}
self.backend_options = backend_options
if compress and mmap_mode is not None:
warnings.warn('Compressed results cannot be memmapped',
stacklevel=2)
self.location = location
if isinstance(location, str):
location = os.path.join(location, 'joblib')
self.store_backend = _store_backend_factory(
backend, location, verbose=self._verbose,
backend_options=dict(compress=compress, mmap_mode=mmap_mode,
**backend_options))
def cache(self, func=None, ignore=None, verbose=None, mmap_mode=False):
""" Decorates the given function func to only compute its return
value for input arguments not cached on disk.
Parameters
----------
func: callable, optional
The function to be decorated
ignore: list of strings
A list of arguments name to ignore in the hashing
verbose: integer, optional
The verbosity mode of the function. By default that
of the memory object is used.
mmap_mode: {None, 'r+', 'r', 'w+', 'c'}, optional
The memmapping mode used when loading from cache
numpy arrays. See numpy.load for the meaning of the
arguments. By default that of the memory object is used.
Returns
-------
decorated_func: MemorizedFunc object
The returned object is a MemorizedFunc object, that is
callable (behaves like a function), but offers extra
methods for cache lookup and management. See the
documentation for :class:`joblib.memory.MemorizedFunc`.
"""
if func is None:
# Partial application, to be able to specify extra keyword
# arguments in decorators
return functools.partial(self.cache, ignore=ignore,
verbose=verbose, mmap_mode=mmap_mode)
if self.store_backend is None:
return NotMemorizedFunc(func)
if verbose is None:
verbose = self._verbose
if mmap_mode is False:
mmap_mode = self.mmap_mode
if isinstance(func, MemorizedFunc):
func = func.func
return MemorizedFunc(func, location=self.store_backend,
backend=self.backend,
ignore=ignore, mmap_mode=mmap_mode,
compress=self.compress,
verbose=verbose, timestamp=self.timestamp)
def clear(self, warn=True):
""" Erase the complete cache directory.
"""
if warn:
self.warn('Flushing completely the cache')
if self.store_backend is not None:
self.store_backend.clear()
# As the cache in completely clear, make sure the _FUNCTION_HASHES
# cache is also reset. Else, for a function that is present in this
# table, results cached after this clear will be have cache miss
# as the function code is not re-written.
_FUNCTION_HASHES.clear()
def reduce_size(self):
"""Remove cache elements to make cache size fit in ``bytes_limit``."""
if self.bytes_limit is not None and self.store_backend is not None:
self.store_backend.reduce_store_size(self.bytes_limit)
def eval(self, func, *args, **kwargs):
""" Eval function func with arguments `*args` and `**kwargs`,
in the context of the memory.
This method works similarly to the builtin `apply`, except
that the function is called only if the cache is not
up to date.
"""
if self.store_backend is None:
return func(*args, **kwargs)
return self.cache(func)(*args, **kwargs)
# ------------------------------------------------------------------------
# Private `object` interface
# ------------------------------------------------------------------------
def __repr__(self):
return '{class_name}(location={location})'.format(
class_name=self.__class__.__name__,
location=(None if self.store_backend is None
else self.store_backend.location))
def __getstate__(self):
""" We don't store the timestamp when pickling, to avoid the hash
depending from it.
"""
state = self.__dict__.copy()
state['timestamp'] = None
return state