381 lines
13 KiB
Python
381 lines
13 KiB
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Xception V1 model for Keras.
|
|
|
|
On ImageNet, this model gets to a top-1 validation accuracy of 0.790
|
|
and a top-5 validation accuracy of 0.945.
|
|
|
|
Reference:
|
|
- [Xception: Deep Learning with Depthwise Separable Convolutions](
|
|
https://arxiv.org/abs/1610.02357) (CVPR 2017)
|
|
"""
|
|
|
|
import tensorflow.compat.v2 as tf
|
|
|
|
from keras import backend
|
|
from keras.applications import imagenet_utils
|
|
from keras.engine import training
|
|
from keras.layers import VersionAwareLayers
|
|
from keras.utils import data_utils
|
|
from keras.utils import layer_utils
|
|
|
|
# isort: off
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
|
|
TF_WEIGHTS_PATH = (
|
|
"https://storage.googleapis.com/tensorflow/keras-applications/"
|
|
"xception/xception_weights_tf_dim_ordering_tf_kernels.h5"
|
|
)
|
|
TF_WEIGHTS_PATH_NO_TOP = (
|
|
"https://storage.googleapis.com/tensorflow/keras-applications/"
|
|
"xception/xception_weights_tf_dim_ordering_tf_kernels_notop.h5"
|
|
)
|
|
|
|
layers = VersionAwareLayers()
|
|
|
|
|
|
@keras_export(
|
|
"keras.applications.xception.Xception", "keras.applications.Xception"
|
|
)
|
|
def Xception(
|
|
include_top=True,
|
|
weights="imagenet",
|
|
input_tensor=None,
|
|
input_shape=None,
|
|
pooling=None,
|
|
classes=1000,
|
|
classifier_activation="softmax",
|
|
):
|
|
"""Instantiates the Xception architecture.
|
|
|
|
Reference:
|
|
- [Xception: Deep Learning with Depthwise Separable Convolutions](
|
|
https://arxiv.org/abs/1610.02357) (CVPR 2017)
|
|
|
|
For image classification use cases, see
|
|
[this page for detailed examples](
|
|
https://keras.io/api/applications/#usage-examples-for-image-classification-models).
|
|
|
|
For transfer learning use cases, make sure to read the
|
|
[guide to transfer learning & fine-tuning](
|
|
https://keras.io/guides/transfer_learning/).
|
|
|
|
The default input image size for this model is 299x299.
|
|
|
|
Note: each Keras Application expects a specific kind of input preprocessing.
|
|
For Xception, call `tf.keras.applications.xception.preprocess_input` on your
|
|
inputs before passing them to the model.
|
|
`xception.preprocess_input` will scale input pixels between -1 and 1.
|
|
|
|
Args:
|
|
include_top: whether to include the fully-connected
|
|
layer at the top of the network.
|
|
weights: one of `None` (random initialization),
|
|
'imagenet' (pre-training on ImageNet),
|
|
or the path to the weights file to be loaded.
|
|
input_tensor: optional Keras tensor
|
|
(i.e. output of `layers.Input()`)
|
|
to use as image input for the model.
|
|
input_shape: optional shape tuple, only to be specified
|
|
if `include_top` is False (otherwise the input shape
|
|
has to be `(299, 299, 3)`.
|
|
It should have exactly 3 inputs channels,
|
|
and width and height should be no smaller than 71.
|
|
E.g. `(150, 150, 3)` would be one valid value.
|
|
pooling: Optional pooling mode for feature extraction
|
|
when `include_top` is `False`.
|
|
- `None` means that the output of the model will be
|
|
the 4D tensor output of the
|
|
last convolutional block.
|
|
- `avg` means that global average pooling
|
|
will be applied to the output of the
|
|
last convolutional block, and thus
|
|
the output of the model will be a 2D tensor.
|
|
- `max` means that global max pooling will
|
|
be applied.
|
|
classes: optional number of classes to classify images
|
|
into, only to be specified if `include_top` is True,
|
|
and if no `weights` argument is specified.
|
|
classifier_activation: A `str` or callable. The activation function to use
|
|
on the "top" layer. Ignored unless `include_top=True`. Set
|
|
`classifier_activation=None` to return the logits of the "top" layer.
|
|
When loading pretrained weights, `classifier_activation` can only
|
|
be `None` or `"softmax"`.
|
|
|
|
Returns:
|
|
A `keras.Model` instance.
|
|
"""
|
|
if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
|
|
raise ValueError(
|
|
"The `weights` argument should be either "
|
|
"`None` (random initialization), `imagenet` "
|
|
"(pre-training on ImageNet), "
|
|
"or the path to the weights file to be loaded."
|
|
)
|
|
|
|
if weights == "imagenet" and include_top and classes != 1000:
|
|
raise ValueError(
|
|
'If using `weights` as `"imagenet"` with `include_top`'
|
|
" as true, `classes` should be 1000"
|
|
)
|
|
|
|
# Determine proper input shape
|
|
input_shape = imagenet_utils.obtain_input_shape(
|
|
input_shape,
|
|
default_size=299,
|
|
min_size=71,
|
|
data_format=backend.image_data_format(),
|
|
require_flatten=include_top,
|
|
weights=weights,
|
|
)
|
|
|
|
if input_tensor is None:
|
|
img_input = layers.Input(shape=input_shape)
|
|
else:
|
|
if not backend.is_keras_tensor(input_tensor):
|
|
img_input = layers.Input(tensor=input_tensor, shape=input_shape)
|
|
else:
|
|
img_input = input_tensor
|
|
|
|
channel_axis = 1 if backend.image_data_format() == "channels_first" else -1
|
|
|
|
x = layers.Conv2D(
|
|
32, (3, 3), strides=(2, 2), use_bias=False, name="block1_conv1"
|
|
)(img_input)
|
|
x = layers.BatchNormalization(axis=channel_axis, name="block1_conv1_bn")(x)
|
|
x = layers.Activation("relu", name="block1_conv1_act")(x)
|
|
x = layers.Conv2D(64, (3, 3), use_bias=False, name="block1_conv2")(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name="block1_conv2_bn")(x)
|
|
x = layers.Activation("relu", name="block1_conv2_act")(x)
|
|
|
|
residual = layers.Conv2D(
|
|
128, (1, 1), strides=(2, 2), padding="same", use_bias=False
|
|
)(x)
|
|
residual = layers.BatchNormalization(axis=channel_axis)(residual)
|
|
|
|
x = layers.SeparableConv2D(
|
|
128, (3, 3), padding="same", use_bias=False, name="block2_sepconv1"
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv1_bn")(
|
|
x
|
|
)
|
|
x = layers.Activation("relu", name="block2_sepconv2_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
128, (3, 3), padding="same", use_bias=False, name="block2_sepconv2"
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name="block2_sepconv2_bn")(
|
|
x
|
|
)
|
|
|
|
x = layers.MaxPooling2D(
|
|
(3, 3), strides=(2, 2), padding="same", name="block2_pool"
|
|
)(x)
|
|
x = layers.add([x, residual])
|
|
|
|
residual = layers.Conv2D(
|
|
256, (1, 1), strides=(2, 2), padding="same", use_bias=False
|
|
)(x)
|
|
residual = layers.BatchNormalization(axis=channel_axis)(residual)
|
|
|
|
x = layers.Activation("relu", name="block3_sepconv1_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
256, (3, 3), padding="same", use_bias=False, name="block3_sepconv1"
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv1_bn")(
|
|
x
|
|
)
|
|
x = layers.Activation("relu", name="block3_sepconv2_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
256, (3, 3), padding="same", use_bias=False, name="block3_sepconv2"
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name="block3_sepconv2_bn")(
|
|
x
|
|
)
|
|
|
|
x = layers.MaxPooling2D(
|
|
(3, 3), strides=(2, 2), padding="same", name="block3_pool"
|
|
)(x)
|
|
x = layers.add([x, residual])
|
|
|
|
residual = layers.Conv2D(
|
|
728, (1, 1), strides=(2, 2), padding="same", use_bias=False
|
|
)(x)
|
|
residual = layers.BatchNormalization(axis=channel_axis)(residual)
|
|
|
|
x = layers.Activation("relu", name="block4_sepconv1_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
728, (3, 3), padding="same", use_bias=False, name="block4_sepconv1"
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv1_bn")(
|
|
x
|
|
)
|
|
x = layers.Activation("relu", name="block4_sepconv2_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
728, (3, 3), padding="same", use_bias=False, name="block4_sepconv2"
|
|
)(x)
|
|
x = layers.BatchNormalization(axis=channel_axis, name="block4_sepconv2_bn")(
|
|
x
|
|
)
|
|
|
|
x = layers.MaxPooling2D(
|
|
(3, 3), strides=(2, 2), padding="same", name="block4_pool"
|
|
)(x)
|
|
x = layers.add([x, residual])
|
|
|
|
for i in range(8):
|
|
residual = x
|
|
prefix = "block" + str(i + 5)
|
|
|
|
x = layers.Activation("relu", name=prefix + "_sepconv1_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
728,
|
|
(3, 3),
|
|
padding="same",
|
|
use_bias=False,
|
|
name=prefix + "_sepconv1",
|
|
)(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name=prefix + "_sepconv1_bn"
|
|
)(x)
|
|
x = layers.Activation("relu", name=prefix + "_sepconv2_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
728,
|
|
(3, 3),
|
|
padding="same",
|
|
use_bias=False,
|
|
name=prefix + "_sepconv2",
|
|
)(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name=prefix + "_sepconv2_bn"
|
|
)(x)
|
|
x = layers.Activation("relu", name=prefix + "_sepconv3_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
728,
|
|
(3, 3),
|
|
padding="same",
|
|
use_bias=False,
|
|
name=prefix + "_sepconv3",
|
|
)(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name=prefix + "_sepconv3_bn"
|
|
)(x)
|
|
|
|
x = layers.add([x, residual])
|
|
|
|
residual = layers.Conv2D(
|
|
1024, (1, 1), strides=(2, 2), padding="same", use_bias=False
|
|
)(x)
|
|
residual = layers.BatchNormalization(axis=channel_axis)(residual)
|
|
|
|
x = layers.Activation("relu", name="block13_sepconv1_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
728, (3, 3), padding="same", use_bias=False, name="block13_sepconv1"
|
|
)(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name="block13_sepconv1_bn"
|
|
)(x)
|
|
x = layers.Activation("relu", name="block13_sepconv2_act")(x)
|
|
x = layers.SeparableConv2D(
|
|
1024, (3, 3), padding="same", use_bias=False, name="block13_sepconv2"
|
|
)(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name="block13_sepconv2_bn"
|
|
)(x)
|
|
|
|
x = layers.MaxPooling2D(
|
|
(3, 3), strides=(2, 2), padding="same", name="block13_pool"
|
|
)(x)
|
|
x = layers.add([x, residual])
|
|
|
|
x = layers.SeparableConv2D(
|
|
1536, (3, 3), padding="same", use_bias=False, name="block14_sepconv1"
|
|
)(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name="block14_sepconv1_bn"
|
|
)(x)
|
|
x = layers.Activation("relu", name="block14_sepconv1_act")(x)
|
|
|
|
x = layers.SeparableConv2D(
|
|
2048, (3, 3), padding="same", use_bias=False, name="block14_sepconv2"
|
|
)(x)
|
|
x = layers.BatchNormalization(
|
|
axis=channel_axis, name="block14_sepconv2_bn"
|
|
)(x)
|
|
x = layers.Activation("relu", name="block14_sepconv2_act")(x)
|
|
|
|
if include_top:
|
|
x = layers.GlobalAveragePooling2D(name="avg_pool")(x)
|
|
imagenet_utils.validate_activation(classifier_activation, weights)
|
|
x = layers.Dense(
|
|
classes, activation=classifier_activation, name="predictions"
|
|
)(x)
|
|
else:
|
|
if pooling == "avg":
|
|
x = layers.GlobalAveragePooling2D()(x)
|
|
elif pooling == "max":
|
|
x = layers.GlobalMaxPooling2D()(x)
|
|
|
|
# Ensure that the model takes into account
|
|
# any potential predecessors of `input_tensor`.
|
|
if input_tensor is not None:
|
|
inputs = layer_utils.get_source_inputs(input_tensor)
|
|
else:
|
|
inputs = img_input
|
|
# Create model.
|
|
model = training.Model(inputs, x, name="xception")
|
|
|
|
# Load weights.
|
|
if weights == "imagenet":
|
|
if include_top:
|
|
weights_path = data_utils.get_file(
|
|
"xception_weights_tf_dim_ordering_tf_kernels.h5",
|
|
TF_WEIGHTS_PATH,
|
|
cache_subdir="models",
|
|
file_hash="0a58e3b7378bc2990ea3b43d5981f1f6",
|
|
)
|
|
else:
|
|
weights_path = data_utils.get_file(
|
|
"xception_weights_tf_dim_ordering_tf_kernels_notop.h5",
|
|
TF_WEIGHTS_PATH_NO_TOP,
|
|
cache_subdir="models",
|
|
file_hash="b0042744bf5b25fce3cb969f33bebb97",
|
|
)
|
|
model.load_weights(weights_path)
|
|
elif weights is not None:
|
|
model.load_weights(weights)
|
|
|
|
return model
|
|
|
|
|
|
@keras_export("keras.applications.xception.preprocess_input")
|
|
def preprocess_input(x, data_format=None):
|
|
return imagenet_utils.preprocess_input(
|
|
x, data_format=data_format, mode="tf"
|
|
)
|
|
|
|
|
|
@keras_export("keras.applications.xception.decode_predictions")
|
|
def decode_predictions(preds, top=5):
|
|
return imagenet_utils.decode_predictions(preds, top=top)
|
|
|
|
|
|
preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format(
|
|
mode="",
|
|
ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF,
|
|
error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC,
|
|
)
|
|
decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
|