Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/core/lambda_layer.py
2023-06-19 00:49:18 +02:00

415 lines
16 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the Lambda layer."""
import sys
import textwrap
import types as python_types
import warnings
import numpy as np
import tensorflow.compat.v2 as tf
from keras.engine.base_layer import Layer
from keras.saving import serialization_lib
from keras.saving.legacy import serialization as legacy_serialization
from keras.utils import generic_utils
from keras.utils import tf_inspect
from keras.utils import tf_utils
# isort: off
from tensorflow.python.platform import tf_logging
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.Lambda")
class Lambda(Layer):
"""Wraps arbitrary expressions as a `Layer` object.
The `Lambda` layer exists so that arbitrary expressions can be used
as a `Layer` when constructing `Sequential`
and Functional API models. `Lambda` layers are best suited for simple
operations or quick experimentation. For more advanced use cases, follow
[this guide](
https://www.tensorflow.org/guide/keras/custom_layers_and_models)
for subclassing `tf.keras.layers.Layer`.
WARNING: `tf.keras.layers.Lambda` layers have (de)serialization limitations!
The main reason to subclass `tf.keras.layers.Layer` instead of using a
`Lambda` layer is saving and inspecting a Model. `Lambda` layers
are saved by serializing the Python bytecode, which is fundamentally
non-portable. They should only be loaded in the same environment where
they were saved. Subclassed layers can be saved in a more portable way
by overriding their `get_config` method. Models that rely on
subclassed Layers are also often easier to visualize and reason about.
Examples:
```python
# add a x -> x^2 layer
model.add(Lambda(lambda x: x ** 2))
```
```python
# add a layer that returns the concatenation
# of the positive part of the input and
# the opposite of the negative part
def antirectifier(x):
x -= K.mean(x, axis=1, keepdims=True)
x = K.l2_normalize(x, axis=1)
pos = K.relu(x)
neg = K.relu(-x)
return K.concatenate([pos, neg], axis=1)
model.add(Lambda(antirectifier))
```
Variables:
While it is possible to use Variables with Lambda layers, this practice is
discouraged as it can easily lead to bugs. For instance, consider the
following layer:
```python
scale = tf.Variable(1.)
scale_layer = tf.keras.layers.Lambda(lambda x: x * scale)
```
Because scale_layer does not directly track the `scale` variable, it will
not appear in `scale_layer.trainable_weights` and will therefore not be
trained if `scale_layer` is used in a Model.
A better pattern is to write a subclassed Layer:
```python
class ScaleLayer(tf.keras.layers.Layer):
def __init__(self):
super(ScaleLayer, self).__init__()
self.scale = tf.Variable(1.)
def call(self, inputs):
return inputs * self.scale
```
In general, Lambda layers can be convenient for simple stateless
computation, but anything more complex should use a subclass Layer
instead.
Args:
function: The function to be evaluated. Takes input tensor as first
argument.
output_shape: Expected output shape from function. This argument can be
inferred if not explicitly provided. Can be a tuple or function. If a
tuple, it only specifies the first dimension onward;
sample dimension is assumed either the same as the input:
`output_shape = (input_shape[0], ) + output_shape` or, the input is
`None` and the sample dimension is also `None`:
`output_shape = (None, ) + output_shape` If a function, it specifies the
entire shape as a function of the input shape:
`output_shape = f(input_shape)`
mask: Either None (indicating no masking) or a callable with the same
signature as the `compute_mask` layer method, or a tensor that will be
returned as output mask regardless of what the input is.
arguments: Optional dictionary of keyword arguments to be passed to the
function.
Input shape: Arbitrary. Use the keyword argument input_shape (tuple of
integers, does not include the samples axis) when using this layer as the
first layer in a model.
Output shape: Specified by `output_shape` argument
"""
@tf.__internal__.tracking.no_automatic_dependency_tracking
def __init__(
self, function, output_shape=None, mask=None, arguments=None, **kwargs
):
super().__init__(**kwargs)
self.arguments = arguments or {}
self.function = function
if mask is not None:
self.supports_masking = True
self.mask = mask
self._output_shape = output_shape
# Warning on every invocation will be quite irksome in Eager mode.
self._already_warned = False
function_args = tf_inspect.getfullargspec(function).args
self._fn_expects_training_arg = "training" in function_args
self._fn_expects_mask_arg = "mask" in function_args
@tf_utils.shape_type_conversion
def compute_output_shape(self, input_shape):
if self._output_shape is None:
# Make use of existing autocomputation but provide Lambda-specific
# error message. This is always safe to run even when the outer
# context is Graph mode because Lambda layers don't have side
# effects such as `add_loss`.
with tf.__internal__.eager_context.eager_mode():
try:
return super().compute_output_shape(input_shape)
except NotImplementedError:
raise NotImplementedError(
"We could not automatically infer the shape of "
"the Lambda's output. Please specify `output_shape` "
"for this Lambda."
)
if callable(self._output_shape):
output_shapes = self._output_shape(input_shape)
return tf_utils.convert_shapes(output_shapes, to_tuples=False)
# Output shapes are passed directly and don't include batch dimension.
input_tensor_shape = tf_utils.convert_shapes(
input_shape, to_tuples=False
)
batch_size = (
tf.nest.flatten(input_tensor_shape)[0][0] if input_shape else None
)
def _add_batch(shape):
return tf.TensorShape([batch_size] + shape.as_list())
output_shapes = tf_utils.convert_shapes(
self._output_shape, to_tuples=False
)
return tf.nest.map_structure(_add_batch, output_shapes)
def call(self, inputs, mask=None, training=None):
# We must copy for thread safety, but it only needs to be a shallow
# copy.
kwargs = {k: v for k, v in self.arguments.items()}
if self._fn_expects_mask_arg:
kwargs["mask"] = mask
if self._fn_expects_training_arg:
kwargs["training"] = training
created_variables = []
def _variable_creator(next_creator, **kwargs):
var = next_creator(**kwargs)
created_variables.append(var)
return var
with tf.GradientTape(
watch_accessed_variables=True
) as tape, tf.variable_creator_scope(_variable_creator):
result = self.function(inputs, **kwargs)
self._check_variables(created_variables, tape.watched_variables())
return result
def _check_variables(self, created_variables, accessed_variables):
if not created_variables and not accessed_variables:
# In the common case that a Lambda layer does not touch a Variable,
# we don't want to incur the runtime cost of assembling any state
# used for checking only to immediately discard it.
return
# Filter out the state variable in the tf.random.Generator, which is
# commonly used for initializer or droput. The variable is intentionally
# not tracked and it is not a trainable variable.
created_variables = [
v for v in created_variables if "StateVar" not in v.name
]
tracked_weights = set(v.ref() for v in self.weights)
untracked_new_vars = [
v for v in created_variables if v.ref() not in tracked_weights
]
if untracked_new_vars:
variable_str = "\n".join(f" {i}" for i in untracked_new_vars)
error_str = textwrap.dedent(
"""
The following Variables were created within a Lambda layer ({name})
but are not tracked by said layer:
{variable_str}
The layer cannot safely ensure proper Variable reuse across multiple
calls, and consequently this behavior is disallowed for safety. Lambda
layers are not well suited to stateful computation; instead, writing a
subclassed Layer is the recommend way to define layers with
Variables."""
).format(name=self.name, variable_str=variable_str)
raise ValueError(error_str)
untracked_used_vars = [
v for v in accessed_variables if v.ref() not in tracked_weights
]
if untracked_used_vars and not self._already_warned:
variable_str = "\n".join(f" {i}" for i in untracked_used_vars)
self._warn(
textwrap.dedent(
"""
The following Variables were used a Lambda layer's call ({name}), but
are not present in its tracked objects:
{variable_str}
It is possible that this is intended behavior, but it is more likely
an omission. This is a strong indication that this layer should be
formulated as a subclassed Layer rather than a Lambda layer."""
).format(name=self.name, variable_str=variable_str)
)
self._already_warned = True
def _warn(self, msg):
# This method will be overridden in a unit test to raise an error,
# because self.assertWarns is not universally implemented.
return tf_logging.warning(msg)
def compute_mask(self, inputs, mask=None):
if callable(self.mask):
return self.mask(inputs, mask)
return self.mask
def get_config(self):
function_config = self._serialize_function_to_config(self.function)
output_shape_config = self._serialize_function_to_config(
self._output_shape, allow_raw=True
)
config = {
"function": function_config[0],
"function_type": function_config[1],
"module": function_config[2],
"output_shape": output_shape_config[0],
"output_shape_type": output_shape_config[1],
"output_shape_module": output_shape_config[2],
}
if self.mask is not None:
mask_config = self._serialize_function_to_config(self.mask)
config.update(
{
"mask": mask_config[0],
"mask_type": mask_config[1],
"mask_module": mask_config[2],
}
)
config["arguments"] = self.arguments
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def _serialize_function_to_config(self, inputs, allow_raw=False):
if isinstance(inputs, python_types.LambdaType):
output = generic_utils.func_dump(inputs)
output_type = "lambda"
module = inputs.__module__
elif callable(inputs):
output = inputs.__name__
output_type = "function"
module = inputs.__module__
elif allow_raw:
output = inputs
output_type = "raw"
module = None
else:
raise ValueError(
f"Invalid input for serialization, type: {type(inputs)} "
)
return output, output_type, module
@classmethod
def from_config(cls, config, custom_objects=None):
config = config.copy()
function = cls._parse_function_from_config(
config, custom_objects, "function", "module", "function_type"
)
output_shape = cls._parse_function_from_config(
config,
custom_objects,
"output_shape",
"output_shape_module",
"output_shape_type",
)
if "mask" in config:
mask = cls._parse_function_from_config(
config, custom_objects, "mask", "mask_module", "mask_type"
)
else:
mask = None
config["function"] = function
config["output_shape"] = output_shape
config["mask"] = mask
# If arguments were numpy array, they have been saved as
# list. We need to recover the ndarray
if "arguments" in config:
for key in config["arguments"]:
if isinstance(config["arguments"][key], dict):
arg_dict = config["arguments"][key]
if "type" in arg_dict and arg_dict["type"] == "ndarray":
# Overwrite the argument with its numpy translation
config["arguments"][key] = np.array(arg_dict["value"])
return cls(**config)
@classmethod
def _parse_function_from_config(
cls,
config,
custom_objects,
func_attr_name,
module_attr_name,
func_type_attr_name,
):
globs = globals().copy()
module = config.pop(module_attr_name, None)
if module in sys.modules:
globs.update(sys.modules[module].__dict__)
elif module is not None:
# Note: we don't know the name of the function if it's a lambda.
warnings.warn(
"{} is not loaded, but a Lambda layer uses it. "
"It may cause errors.".format(module),
UserWarning,
stacklevel=2,
)
if custom_objects:
globs.update(custom_objects)
function_type = config.pop(func_type_attr_name)
if function_type == "function":
# Simple lookup in custom objects
function = legacy_serialization.deserialize_keras_object(
config[func_attr_name],
custom_objects=custom_objects,
printable_module_name="function in Lambda layer",
)
elif function_type == "lambda":
if serialization_lib.in_safe_mode():
raise ValueError(
"Requested the deserialization of a Lambda layer with a "
"Python `lambda` inside it. "
"This carries a potential risk of arbitrary code execution "
"and thus it is disallowed by default. If you trust the "
"source of the saved model, you can pass `safe_mode=False` "
"to the loading function in order to allow "
"Lambda layer loading."
)
# /!\ Unsafe deserialization from bytecode! Danger! /!\
function = generic_utils.func_load(
config[func_attr_name], globs=globs
)
elif function_type == "raw":
function = config[func_attr_name]
else:
supported_types = ["function", "lambda", "raw"]
raise TypeError(
"Unsupported value for `function_type` argument. Received: "
f"function_type={function_type}. "
f"Expected one of {supported_types}"
)
return function