Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/merging/add.py
2023-06-19 00:49:18 +02:00

93 lines
2.9 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Layer that adds several inputs."""
from keras.layers.merging.base_merge import _Merge
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.Add")
class Add(_Merge):
"""Layer that adds a list of inputs.
It takes as input a list of tensors,
all of the same shape, and returns
a single tensor (also of the same shape).
Examples:
>>> input_shape = (2, 3, 4)
>>> x1 = tf.random.normal(input_shape)
>>> x2 = tf.random.normal(input_shape)
>>> y = tf.keras.layers.Add()([x1, x2])
>>> print(y.shape)
(2, 3, 4)
Used in a functional model:
>>> input1 = tf.keras.layers.Input(shape=(16,))
>>> x1 = tf.keras.layers.Dense(8, activation='relu')(input1)
>>> input2 = tf.keras.layers.Input(shape=(32,))
>>> x2 = tf.keras.layers.Dense(8, activation='relu')(input2)
>>> # equivalent to `added = tf.keras.layers.add([x1, x2])`
>>> added = tf.keras.layers.Add()([x1, x2])
>>> out = tf.keras.layers.Dense(4)(added)
>>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)
"""
def _merge_function(self, inputs):
output = inputs[0]
for i in range(1, len(inputs)):
output += inputs[i]
return output
@keras_export("keras.layers.add")
def add(inputs, **kwargs):
"""Functional interface to the `tf.keras.layers.Add` layer.
Args:
inputs: A list of input tensors with the same shape.
**kwargs: Standard layer keyword arguments.
Returns:
A tensor as the sum of the inputs. It has the same shape as the inputs.
Examples:
>>> input_shape = (2, 3, 4)
>>> x1 = tf.random.normal(input_shape)
>>> x2 = tf.random.normal(input_shape)
>>> y = tf.keras.layers.add([x1, x2])
>>> print(y.shape)
(2, 3, 4)
Used in a functional model:
>>> input1 = tf.keras.layers.Input(shape=(16,))
>>> x1 = tf.keras.layers.Dense(8, activation='relu')(input1)
>>> input2 = tf.keras.layers.Input(shape=(32,))
>>> x2 = tf.keras.layers.Dense(8, activation='relu')(input2)
>>> added = tf.keras.layers.add([x1, x2])
>>> out = tf.keras.layers.Dense(4)(added)
>>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)
"""
return Add(**kwargs)(inputs)