Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/reshaping/flatten.py
2023-06-19 00:49:18 +02:00

122 lines
4.4 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the flatten layer."""
import functools
import operator
import numpy as np
import tensorflow.compat.v2 as tf
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
from keras.utils import conv_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.Flatten")
class Flatten(Layer):
"""Flattens the input. Does not affect the batch size.
Note: If inputs are shaped `(batch,)` without a feature axis, then
flattening adds an extra channel dimension and output shape is `(batch, 1)`.
Args:
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch, ..., channels)` while `channels_first` corresponds to
inputs with shape `(batch, channels, ...)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Example:
>>> model = tf.keras.Sequential()
>>> model.add(tf.keras.layers.Conv2D(64, 3, 3, input_shape=(3, 32, 32)))
>>> model.output_shape
(None, 1, 10, 64)
>>> model.add(Flatten())
>>> model.output_shape
(None, 640)
"""
def __init__(self, data_format=None, **kwargs):
super().__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
self.input_spec = InputSpec(min_ndim=1)
self._channels_first = self.data_format == "channels_first"
def call(self, inputs):
if self._channels_first:
rank = inputs.shape.rank
if rank and rank > 1:
# Switch to channels-last format.
permutation = [0]
permutation.extend(range(2, rank))
permutation.append(1)
inputs = tf.transpose(inputs, perm=permutation)
if tf.executing_eagerly():
# Full static shape is guaranteed to be available.
# Performance: Using `constant_op` is much faster than passing a
# list.
flattened_shape = tf.constant([inputs.shape[0], -1])
return tf.reshape(inputs, flattened_shape)
else:
input_shape = inputs.shape
rank = input_shape.rank
if rank == 1:
return tf.expand_dims(inputs, axis=1)
else:
batch_dim = tf.compat.dimension_value(input_shape[0])
non_batch_dims = input_shape[1:]
# Reshape in a way that preserves as much shape info as
# possible.
if non_batch_dims.is_fully_defined():
last_dim = int(
functools.reduce(operator.mul, non_batch_dims)
)
flattened_shape = tf.constant([-1, last_dim])
elif batch_dim is not None:
flattened_shape = tf.constant([int(batch_dim), -1])
else:
flattened_shape = [tf.shape(inputs)[0], -1]
return tf.reshape(inputs, flattened_shape)
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape).as_list()
if not input_shape:
output_shape = tf.TensorShape([1])
else:
output_shape = [input_shape[0]]
if np.all(input_shape[1:]):
output_shape += [np.prod(input_shape[1:], dtype=int)]
else:
output_shape += [None]
return tf.TensorShape(output_shape)
def get_config(self):
config = super().get_config()
config.update({"data_format": self.data_format})
return config