Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/reshaping/zero_padding1d.py
2023-06-19 00:49:18 +02:00

95 lines
3.0 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras zero-padding layer for 1D input."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
from keras.utils import conv_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.ZeroPadding1D")
class ZeroPadding1D(Layer):
"""Zero-padding layer for 1D input (e.g. temporal sequence).
Examples:
>>> input_shape = (2, 2, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> print(x)
[[[ 0 1 2]
[ 3 4 5]]
[[ 6 7 8]
[ 9 10 11]]]
>>> y = tf.keras.layers.ZeroPadding1D(padding=2)(x)
>>> print(y)
tf.Tensor(
[[[ 0 0 0]
[ 0 0 0]
[ 0 1 2]
[ 3 4 5]
[ 0 0 0]
[ 0 0 0]]
[[ 0 0 0]
[ 0 0 0]
[ 6 7 8]
[ 9 10 11]
[ 0 0 0]
[ 0 0 0]]], shape=(2, 6, 3), dtype=int64)
Args:
padding: Int, or tuple of int (length 2), or dictionary.
- If int:
How many zeros to add at the beginning and end of
the padding dimension (axis 1).
- If tuple of int (length 2):
How many zeros to add at the beginning and the end of
the padding dimension (`(left_pad, right_pad)`).
Input shape:
3D tensor with shape `(batch_size, axis_to_pad, features)`
Output shape:
3D tensor with shape `(batch_size, padded_axis, features)`
"""
def __init__(self, padding=1, **kwargs):
super().__init__(**kwargs)
self.padding = conv_utils.normalize_tuple(
padding, 2, "padding", allow_zero=True
)
self.input_spec = InputSpec(ndim=3)
def compute_output_shape(self, input_shape):
if input_shape[1] is not None:
length = input_shape[1] + self.padding[0] + self.padding[1]
else:
length = None
return tf.TensorShape([input_shape[0], length, input_shape[2]])
def call(self, inputs):
return backend.temporal_padding(inputs, padding=self.padding)
def get_config(self):
config = {"padding": self.padding}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))