319 lines
13 KiB
Python
319 lines
13 KiB
Python
"""
|
|
Unit test for DIRECT optimization algorithm.
|
|
"""
|
|
from numpy.testing import (assert_allclose,
|
|
assert_array_less)
|
|
import pytest
|
|
import numpy as np
|
|
from scipy.optimize import direct, Bounds
|
|
|
|
|
|
class TestDIRECT:
|
|
|
|
def setup_method(self):
|
|
self.fun_calls = 0
|
|
self.bounds_sphere = 4*[(-2, 3)]
|
|
self.optimum_sphere_pos = np.zeros((4, ))
|
|
self.optimum_sphere = 0.0
|
|
self.bounds_stylinski_tang = Bounds([-4., -4.], [4., 4.])
|
|
self.maxiter = 1000
|
|
|
|
# test functions
|
|
def sphere(self, x):
|
|
self.fun_calls += 1
|
|
return np.square(x).sum()
|
|
|
|
def inv(self, x):
|
|
if np.sum(x) == 0:
|
|
raise ZeroDivisionError()
|
|
return 1/np.sum(x)
|
|
|
|
def nan_fun(self, x):
|
|
return np.nan
|
|
|
|
def inf_fun(self, x):
|
|
return np.inf
|
|
|
|
def styblinski_tang(self, pos):
|
|
x, y = pos
|
|
return 0.5 * (x**4 - 16 * x**2 + 5 * x + y**4 - 16 * y**2 + 5 * y)
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_direct(self, locally_biased):
|
|
res = direct(self.sphere, self.bounds_sphere,
|
|
locally_biased=locally_biased)
|
|
|
|
# test accuracy
|
|
assert_allclose(res.x, self.optimum_sphere_pos,
|
|
rtol=1e-3, atol=1e-3)
|
|
assert_allclose(res.fun, self.optimum_sphere, atol=1e-5, rtol=1e-5)
|
|
|
|
# test that result lies within bounds
|
|
_bounds = np.asarray(self.bounds_sphere)
|
|
assert_array_less(_bounds[:, 0], res.x)
|
|
assert_array_less(res.x, _bounds[:, 1])
|
|
|
|
# test number of function evaluations. Original DIRECT overshoots by
|
|
# up to 500 evaluations in last iteration
|
|
assert res.nfev <= 1000 * (len(self.bounds_sphere) + 1)
|
|
# test that number of function evaluations is correct
|
|
assert res.nfev == self.fun_calls
|
|
|
|
# test that number of iterations is below supplied maximum
|
|
assert res.nit <= self.maxiter
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_direct_callback(self, locally_biased):
|
|
# test that callback does not change the result
|
|
res = direct(self.sphere, self.bounds_sphere,
|
|
locally_biased=locally_biased)
|
|
|
|
def callback(x):
|
|
x = 2*x
|
|
dummy = np.square(x)
|
|
print("DIRECT minimization algorithm callback test")
|
|
return dummy
|
|
|
|
res_callback = direct(self.sphere, self.bounds_sphere,
|
|
locally_biased=locally_biased,
|
|
callback=callback)
|
|
|
|
assert_allclose(res.x, res_callback.x)
|
|
|
|
assert res.nit == res_callback.nit
|
|
assert res.nfev == res_callback.nfev
|
|
assert res.status == res_callback.status
|
|
assert res.success == res_callback.success
|
|
assert res.fun == res_callback.fun
|
|
assert_allclose(res.x, res_callback.x)
|
|
assert res.message == res_callback.message
|
|
|
|
# test accuracy
|
|
assert_allclose(res_callback.x, self.optimum_sphere_pos,
|
|
rtol=1e-3, atol=1e-3)
|
|
assert_allclose(res_callback.fun, self.optimum_sphere,
|
|
atol=1e-5, rtol=1e-5)
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_exception(self, locally_biased):
|
|
bounds = 4*[(-10, 10)]
|
|
with pytest.raises(ZeroDivisionError):
|
|
direct(self.inv, bounds=bounds,
|
|
locally_biased=locally_biased)
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_nan(self, locally_biased):
|
|
bounds = 4*[(-10, 10)]
|
|
direct(self.nan_fun, bounds=bounds,
|
|
locally_biased=locally_biased)
|
|
|
|
@pytest.mark.parametrize("len_tol", [1e-3, 1e-4])
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_len_tol(self, len_tol, locally_biased):
|
|
bounds = 4*[(-10., 10.)]
|
|
res = direct(self.sphere, bounds=bounds, len_tol=len_tol,
|
|
vol_tol=1e-30, locally_biased=locally_biased)
|
|
assert res.status == 5
|
|
assert res.success
|
|
assert_allclose(res.x, np.zeros((4, )))
|
|
message = ("The side length measure of the hyperrectangle containing "
|
|
"the lowest function value found is below "
|
|
f"len_tol={len_tol}")
|
|
assert res.message == message
|
|
|
|
@pytest.mark.parametrize("vol_tol", [1e-6, 1e-8])
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_vol_tol(self, vol_tol, locally_biased):
|
|
bounds = 4*[(-10., 10.)]
|
|
res = direct(self.sphere, bounds=bounds, vol_tol=vol_tol,
|
|
len_tol=0., locally_biased=locally_biased)
|
|
assert res.status == 4
|
|
assert res.success
|
|
assert_allclose(res.x, np.zeros((4, )))
|
|
message = ("The volume of the hyperrectangle containing the lowest "
|
|
f"function value found is below vol_tol={vol_tol}")
|
|
assert res.message == message
|
|
|
|
@pytest.mark.parametrize("f_min_rtol", [1e-3, 1e-5, 1e-7])
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_f_min(self, f_min_rtol, locally_biased):
|
|
# test that desired function value is reached within
|
|
# relative tolerance of f_min_rtol
|
|
f_min = 1.
|
|
bounds = 4*[(-2., 10.)]
|
|
res = direct(self.sphere, bounds=bounds, f_min=f_min,
|
|
f_min_rtol=f_min_rtol,
|
|
locally_biased=locally_biased)
|
|
assert res.status == 3
|
|
assert res.success
|
|
assert res.fun < f_min * (1. + f_min_rtol)
|
|
message = ("The best function value found is within a relative "
|
|
f"error={f_min_rtol} of the (known) global optimum f_min")
|
|
assert res.message == message
|
|
|
|
def circle_with_args(self, x, a, b):
|
|
return np.square(x[0] - a) + np.square(x[1] - b).sum()
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_f_circle_with_args(self, locally_biased):
|
|
bounds = 2*[(-2.0, 2.0)]
|
|
|
|
res = direct(self.circle_with_args, bounds, args=(1, 1), maxfun=1250,
|
|
locally_biased=locally_biased)
|
|
assert_allclose(res.x, np.array([1., 1.]), rtol=1e-5)
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_failure_maxfun(self, locally_biased):
|
|
# test that if optimization runs for the maximal number of
|
|
# evaluations, success = False is returned
|
|
|
|
maxfun = 100
|
|
result = direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
maxfun=maxfun, locally_biased=locally_biased)
|
|
assert result.success is False
|
|
assert result.status == 1
|
|
assert result.nfev >= maxfun
|
|
message = ("Number of function evaluations done is "
|
|
f"larger than maxfun={maxfun}")
|
|
assert result.message == message
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_failure_maxiter(self, locally_biased):
|
|
# test that if optimization runs for the maximal number of
|
|
# iterations, success = False is returned
|
|
|
|
maxiter = 10
|
|
result = direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
maxiter=maxiter, locally_biased=locally_biased)
|
|
assert result.success is False
|
|
assert result.status == 2
|
|
assert result.nit >= maxiter
|
|
message = f"Number of iterations is larger than maxiter={maxiter}"
|
|
assert result.message == message
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_bounds_variants(self, locally_biased):
|
|
# test that new and old bounds yield same result
|
|
|
|
lb = [-6., 1., -5.]
|
|
ub = [-1., 3., 5.]
|
|
x_opt = np.array([-1., 1., 0.])
|
|
bounds_old = list(zip(lb, ub))
|
|
bounds_new = Bounds(lb, ub)
|
|
|
|
res_old_bounds = direct(self.sphere, bounds_old,
|
|
locally_biased=locally_biased)
|
|
res_new_bounds = direct(self.sphere, bounds_new,
|
|
locally_biased=locally_biased)
|
|
|
|
assert res_new_bounds.nfev == res_old_bounds.nfev
|
|
assert res_new_bounds.message == res_old_bounds.message
|
|
assert res_new_bounds.success == res_old_bounds.success
|
|
assert res_new_bounds.nit == res_old_bounds.nit
|
|
assert_allclose(res_new_bounds.x, res_old_bounds.x)
|
|
assert_allclose(res_new_bounds.x, x_opt, rtol=1e-2)
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
@pytest.mark.parametrize("eps", [1e-5, 1e-4, 1e-3])
|
|
def test_epsilon(self, eps, locally_biased):
|
|
result = direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
eps=eps, vol_tol=1e-6,
|
|
locally_biased=locally_biased)
|
|
assert result.status == 4
|
|
assert result.success
|
|
|
|
@pytest.mark.xslow
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_no_segmentation_fault(self, locally_biased):
|
|
# test that an excessive number of function evaluations
|
|
# does not result in segmentation fault
|
|
bounds = [(-5., 20.)] * 100
|
|
result = direct(self.sphere, bounds, maxfun=10000000,
|
|
maxiter=1000000, locally_biased=locally_biased)
|
|
assert result is not None
|
|
|
|
@pytest.mark.parametrize("locally_biased", [True, False])
|
|
def test_inf_fun(self, locally_biased):
|
|
# test that an objective value of infinity does not crash DIRECT
|
|
bounds = [(-5., 5.)] * 2
|
|
result = direct(self.inf_fun, bounds,
|
|
locally_biased=locally_biased)
|
|
assert result is not None
|
|
|
|
@pytest.mark.parametrize("len_tol", [-1, 2])
|
|
def test_len_tol_validation(self, len_tol):
|
|
error_msg = "len_tol must be between 0 and 1."
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
len_tol=len_tol)
|
|
|
|
@pytest.mark.parametrize("vol_tol", [-1, 2])
|
|
def test_vol_tol_validation(self, vol_tol):
|
|
error_msg = "vol_tol must be between 0 and 1."
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
vol_tol=vol_tol)
|
|
|
|
@pytest.mark.parametrize("f_min_rtol", [-1, 2])
|
|
def test_fmin_rtol_validation(self, f_min_rtol):
|
|
error_msg = "f_min_rtol must be between 0 and 1."
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
f_min_rtol=f_min_rtol, f_min=0.)
|
|
|
|
@pytest.mark.parametrize("maxfun", [1.5, "string", (1, 2)])
|
|
def test_maxfun_wrong_type(self, maxfun):
|
|
error_msg = "maxfun must be of type int."
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
maxfun=maxfun)
|
|
|
|
@pytest.mark.parametrize("maxiter", [1.5, "string", (1, 2)])
|
|
def test_maxiter_wrong_type(self, maxiter):
|
|
error_msg = "maxiter must be of type int."
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
maxiter=maxiter)
|
|
|
|
def test_negative_maxiter(self):
|
|
error_msg = "maxiter must be > 0."
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
maxiter=-1)
|
|
|
|
def test_negative_maxfun(self):
|
|
error_msg = "maxfun must be > 0."
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
maxfun=-1)
|
|
|
|
@pytest.mark.parametrize("bounds", ["bounds", 2., 0])
|
|
def test_invalid_bounds_type(self, bounds):
|
|
error_msg = ("bounds must be a sequence or "
|
|
"instance of Bounds class")
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, bounds)
|
|
|
|
@pytest.mark.parametrize("bounds",
|
|
[Bounds([-1., -1], [-2, 1]),
|
|
Bounds([-np.nan, -1], [-2, np.nan]),
|
|
]
|
|
)
|
|
def test_incorrect_bounds(self, bounds):
|
|
error_msg = 'Bounds are not consistent min < max'
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, bounds)
|
|
|
|
def test_inf_bounds(self):
|
|
error_msg = 'Bounds must not be inf.'
|
|
bounds = Bounds([-np.inf, -1], [-2, np.inf])
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, bounds)
|
|
|
|
@pytest.mark.parametrize("locally_biased", ["bias", [0, 0], 2.])
|
|
def test_locally_biased_validation(self, locally_biased):
|
|
error_msg = 'locally_biased must be True or False.'
|
|
with pytest.raises(ValueError, match=error_msg):
|
|
direct(self.styblinski_tang, self.bounds_stylinski_tang,
|
|
locally_biased=locally_biased)
|