Intelegentny_Pszczelarz/.venv/Lib/site-packages/jax/_src/lax/fft.py
2023-06-19 00:49:18 +02:00

181 lines
6.8 KiB
Python

# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import math
from typing import Union, Sequence
import numpy as np
from jax import lax
from jax._src import dispatch
from jax._src.api import jit, linear_transpose, ShapeDtypeStruct
from jax._src.core import Primitive, is_constant_shape
from jax._src.interpreters import ad
from jax._src.interpreters import batching
from jax._src.interpreters import mlir
from jax._src.lib.mlir.dialects import hlo
from jax._src.lib import xla_client
from jax._src.lib import ducc_fft
from jax._src.numpy.util import promote_dtypes_complex, promote_dtypes_inexact
__all__ = [
"fft",
"fft_p",
]
def _str_to_fft_type(s: str) -> xla_client.FftType:
if s in ("fft", "FFT"):
return xla_client.FftType.FFT
elif s in ("ifft", "IFFT"):
return xla_client.FftType.IFFT
elif s in ("rfft", "RFFT"):
return xla_client.FftType.RFFT
elif s in ("irfft", "IRFFT"):
return xla_client.FftType.IRFFT
else:
raise ValueError(f"Unknown FFT type '{s}'")
@partial(jit, static_argnums=(1, 2))
def fft(x, fft_type: Union[xla_client.FftType, str], fft_lengths: Sequence[int]):
if isinstance(fft_type, str):
typ = _str_to_fft_type(fft_type)
elif isinstance(fft_type, xla_client.FftType):
typ = fft_type
else:
raise TypeError(f"Unknown FFT type value '{fft_type}'")
if typ == xla_client.FftType.RFFT:
if np.iscomplexobj(x):
raise ValueError("only real valued inputs supported for rfft")
x, = promote_dtypes_inexact(x)
else:
x, = promote_dtypes_complex(x)
if len(fft_lengths) == 0:
# XLA FFT doesn't support 0-rank.
return x
fft_lengths = tuple(fft_lengths)
return fft_p.bind(x, fft_type=typ, fft_lengths=fft_lengths)
def _fft_impl(x, fft_type, fft_lengths):
return dispatch.apply_primitive(fft_p, x, fft_type=fft_type, fft_lengths=fft_lengths)
_complex_dtype = lambda dtype: (np.zeros((), dtype) + np.zeros((), np.complex64)).dtype
_real_dtype = lambda dtype: np.finfo(dtype).dtype
def fft_abstract_eval(x, fft_type, fft_lengths):
if len(fft_lengths) > x.ndim:
raise ValueError(f"FFT input shape {x.shape} must have at least as many "
f"input dimensions as fft_lengths {fft_lengths}.")
if fft_type == xla_client.FftType.RFFT:
if x.shape[-len(fft_lengths):] != fft_lengths:
raise ValueError(f"RFFT input shape {x.shape} minor dimensions must "
f"be equal to fft_lengths {fft_lengths}")
shape = (x.shape[:-len(fft_lengths)] + fft_lengths[:-1]
+ (fft_lengths[-1] // 2 + 1,))
dtype = _complex_dtype(x.dtype)
elif fft_type == xla_client.FftType.IRFFT:
if x.shape[-len(fft_lengths):-1] != fft_lengths[:-1]:
raise ValueError(f"IRFFT input shape {x.shape} minor dimensions must "
"be equal to all except the last fft_length, got "
f"{fft_lengths=}")
shape = x.shape[:-len(fft_lengths)] + fft_lengths
dtype = _real_dtype(x.dtype)
else:
if x.shape[-len(fft_lengths):] != fft_lengths:
raise ValueError(f"FFT input shape {x.shape} minor dimensions must "
f"be equal to fft_lengths {fft_lengths}")
shape = x.shape
dtype = x.dtype
return x.update(shape=shape, dtype=dtype)
def _fft_lowering(ctx, x, *, fft_type, fft_lengths):
return [
hlo.FftOp(x, hlo.FftTypeAttr.get(fft_type.name),
mlir.dense_int_elements(fft_lengths)).result
]
def _fft_lowering_cpu(ctx, x, *, fft_type, fft_lengths):
if any(not is_constant_shape(a.shape) for a in (ctx.avals_in + ctx.avals_out)):
raise NotImplementedError("Shape polymorphism for custom call is not implemented (fft); b/261671778")
x_aval, = ctx.avals_in
return [ducc_fft.ducc_fft_hlo(x, x_aval.dtype, fft_type=fft_type,
fft_lengths=fft_lengths)]
def _naive_rfft(x, fft_lengths):
y = fft(x, xla_client.FftType.FFT, fft_lengths)
n = fft_lengths[-1]
return y[..., : n//2 + 1]
@partial(jit, static_argnums=1)
def _rfft_transpose(t, fft_lengths):
# The transpose of RFFT can't be expressed only in terms of irfft. Instead of
# manually building up larger twiddle matrices (which would increase the
# asymptotic complexity and is also rather complicated), we rely JAX to
# transpose a naive RFFT implementation.
dummy_shape = t.shape[:-len(fft_lengths)] + fft_lengths
dummy_primal = ShapeDtypeStruct(dummy_shape, _real_dtype(t.dtype))
transpose = linear_transpose(
partial(_naive_rfft, fft_lengths=fft_lengths), dummy_primal)
result, = transpose(t)
assert result.dtype == _real_dtype(t.dtype), (result.dtype, t.dtype)
return result
def _irfft_transpose(t, fft_lengths):
# The transpose of IRFFT is the RFFT of the cotangent times a scaling
# factor and a mask. The mask scales the cotangent for the Hermitian
# symmetric components of the RFFT by a factor of two, since these components
# are de-duplicated in the RFFT.
x = fft(t, xla_client.FftType.RFFT, fft_lengths)
n = x.shape[-1]
is_odd = fft_lengths[-1] % 2
full = partial(lax.full_like, t, dtype=x.dtype)
mask = lax.concatenate(
[full(1.0, shape=(1,)),
full(2.0, shape=(n - 2 + is_odd,)),
full(1.0, shape=(1 - is_odd,))],
dimension=0)
scale = 1 / math.prod(fft_lengths)
out = scale * lax.expand_dims(mask, range(x.ndim - 1)) * x
assert out.dtype == _complex_dtype(t.dtype), (out.dtype, t.dtype)
# Use JAX's convention for complex gradients
# https://github.com/google/jax/issues/6223#issuecomment-807740707
return lax.conj(out)
def _fft_transpose_rule(t, operand, fft_type, fft_lengths):
if fft_type == xla_client.FftType.RFFT:
result = _rfft_transpose(t, fft_lengths)
elif fft_type == xla_client.FftType.IRFFT:
result = _irfft_transpose(t, fft_lengths)
else:
result = fft(t, fft_type, fft_lengths)
return result,
def _fft_batching_rule(batched_args, batch_dims, fft_type, fft_lengths):
x, = batched_args
bd, = batch_dims
x = batching.moveaxis(x, bd, 0)
return fft(x, fft_type, fft_lengths), 0
fft_p = Primitive('fft')
fft_p.def_impl(_fft_impl)
fft_p.def_abstract_eval(fft_abstract_eval)
mlir.register_lowering(fft_p, _fft_lowering)
ad.deflinear2(fft_p, _fft_transpose_rule)
batching.primitive_batchers[fft_p] = _fft_batching_rule
mlir.register_lowering(fft_p, _fft_lowering_cpu, platform='cpu')