Intelegentny_Pszczelarz/.venv/Lib/site-packages/jax/_src/numpy/fft.py
2023-06-19 00:49:18 +02:00

324 lines
11 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import operator
from typing import Optional, Sequence, Union
import numpy as np
from jax import dtypes
from jax import lax
from jax._src.lib import xla_client
from jax._src.util import safe_zip
from jax._src.numpy.util import check_arraylike, _wraps
from jax._src.numpy import lax_numpy as jnp
from jax._src.numpy import ufuncs, reductions
from jax._src.typing import Array, ArrayLike
Shape = Sequence[int]
def _fft_norm(s: Array, func_name: str, norm: str) -> Array:
if norm == "backward":
return jnp.array(1)
elif norm == "ortho":
return ufuncs.sqrt(reductions.prod(s)) if func_name.startswith('i') else 1/ufuncs.sqrt(reductions.prod(s))
elif norm == "forward":
return reductions.prod(s) if func_name.startswith('i') else 1/reductions.prod(s)
raise ValueError(f'Invalid norm value {norm}; should be "backward",'
'"ortho" or "forward".')
def _fft_core(func_name: str, fft_type: xla_client.FftType, a: ArrayLike,
s: Optional[Shape], axes: Optional[Sequence[int]],
norm: Optional[str]) -> Array:
full_name = "jax.numpy.fft." + func_name
check_arraylike(full_name, a)
arr = jnp.asarray(a)
if s is not None:
s = tuple(map(operator.index, s))
if np.any(np.less(s, 0)):
raise ValueError("Shape should be non-negative.")
if s is not None and axes is not None and len(s) != len(axes):
# Same error as numpy.
raise ValueError("Shape and axes have different lengths.")
orig_axes = axes
if axes is None:
if s is None:
axes = range(arr.ndim)
else:
axes = range(arr.ndim - len(s), arr.ndim)
if len(axes) != len(set(axes)):
raise ValueError(
f"{full_name} does not support repeated axes. Got axes {axes}.")
if len(axes) > 3:
# XLA does not support FFTs over more than 3 dimensions
raise ValueError(
"%s only supports 1D, 2D, and 3D FFTs. "
"Got axes %s with input rank %s." % (full_name, orig_axes, arr.ndim))
# XLA only supports FFTs over the innermost axes, so rearrange if necessary.
if orig_axes is not None:
axes = tuple(range(arr.ndim - len(axes), arr.ndim))
arr = jnp.moveaxis(arr, orig_axes, axes)
if s is not None:
in_s = list(arr.shape)
for axis, x in safe_zip(axes, s):
in_s[axis] = x
if fft_type == xla_client.FftType.IRFFT:
in_s[-1] = (in_s[-1] // 2 + 1)
# Cropping
arr = arr[tuple(map(slice, in_s))]
# Padding
arr = jnp.pad(arr, [(0, x-y) for x, y in zip(in_s, arr.shape)])
else:
if fft_type == xla_client.FftType.IRFFT:
s = [arr.shape[axis] for axis in axes[:-1]]
if axes:
s += [max(0, 2 * (arr.shape[axes[-1]] - 1))]
else:
s = [arr.shape[axis] for axis in axes]
transformed = lax.fft(arr, fft_type, tuple(s))
if norm is not None:
transformed *= _fft_norm(
jnp.array(s, dtype=transformed.dtype), func_name, norm)
if orig_axes is not None:
transformed = jnp.moveaxis(transformed, axes, orig_axes)
return transformed
@_wraps(np.fft.fftn)
def fftn(a: ArrayLike, s: Optional[Shape] = None,
axes: Optional[Sequence[int]] = None,
norm: Optional[str] = None) -> Array:
return _fft_core('fftn', xla_client.FftType.FFT, a, s, axes, norm)
@_wraps(np.fft.ifftn)
def ifftn(a: ArrayLike, s: Optional[Shape] = None,
axes: Optional[Sequence[int]] = None,
norm: Optional[str] = None) -> Array:
return _fft_core('ifftn', xla_client.FftType.IFFT, a, s, axes, norm)
@_wraps(np.fft.rfftn)
def rfftn(a: ArrayLike, s: Optional[Shape] = None,
axes: Optional[Sequence[int]] = None,
norm: Optional[str] = None) -> Array:
return _fft_core('rfftn', xla_client.FftType.RFFT, a, s, axes, norm)
@_wraps(np.fft.irfftn)
def irfftn(a: ArrayLike, s: Optional[Shape] = None,
axes: Optional[Sequence[int]] = None,
norm: Optional[str] = None) -> Array:
return _fft_core('irfftn', xla_client.FftType.IRFFT, a, s, axes, norm)
def _axis_check_1d(func_name: str, axis: Optional[int]):
full_name = "jax.numpy.fft." + func_name
if isinstance(axis, (list, tuple)):
raise ValueError(
"%s does not support multiple axes. Please use %sn. "
"Got axis = %r." % (full_name, full_name, axis)
)
def _fft_core_1d(func_name: str, fft_type: xla_client.FftType,
a: ArrayLike, n: Optional[int], axis: Optional[int],
norm: Optional[str]) -> Array:
_axis_check_1d(func_name, axis)
axes = None if axis is None else [axis]
s = None if n is None else [n]
return _fft_core(func_name, fft_type, a, s, axes, norm)
@_wraps(np.fft.fft)
def fft(a: ArrayLike, n: Optional[int] = None,
axis: int = -1, norm: Optional[str] = None) -> Array:
return _fft_core_1d('fft', xla_client.FftType.FFT, a, n=n, axis=axis,
norm=norm)
@_wraps(np.fft.ifft)
def ifft(a: ArrayLike, n: Optional[int] = None,
axis: int = -1, norm: Optional[str] = None) -> Array:
return _fft_core_1d('ifft', xla_client.FftType.IFFT, a, n=n, axis=axis,
norm=norm)
@_wraps(np.fft.rfft)
def rfft(a: ArrayLike, n: Optional[int] = None,
axis: int = -1, norm: Optional[str] = None) -> Array:
return _fft_core_1d('rfft', xla_client.FftType.RFFT, a, n=n, axis=axis,
norm=norm)
@_wraps(np.fft.irfft)
def irfft(a: ArrayLike, n: Optional[int] = None,
axis: int = -1, norm: Optional[str] = None) -> Array:
return _fft_core_1d('irfft', xla_client.FftType.IRFFT, a, n=n, axis=axis,
norm=norm)
@_wraps(np.fft.hfft)
def hfft(a: ArrayLike, n: Optional[int] = None,
axis: int = -1, norm: Optional[str] = None) -> Array:
conj_a = ufuncs.conj(a)
_axis_check_1d('hfft', axis)
nn = (conj_a.shape[axis] - 1) * 2 if n is None else n
return _fft_core_1d('hfft', xla_client.FftType.IRFFT, conj_a, n=n, axis=axis,
norm=norm) * nn
@_wraps(np.fft.ihfft)
def ihfft(a: ArrayLike, n: Optional[int] = None,
axis: int = -1, norm: Optional[str] = None) -> Array:
_axis_check_1d('ihfft', axis)
arr = jnp.asarray(a)
nn = arr.shape[axis] if n is None else n
output = _fft_core_1d('ihfft', xla_client.FftType.RFFT, arr, n=n, axis=axis,
norm=norm)
return ufuncs.conj(output) * (1 / nn)
def _fft_core_2d(func_name: str, fft_type: xla_client.FftType, a: ArrayLike,
s: Optional[Shape], axes: Sequence[int],
norm: Optional[str]) -> Array:
full_name = "jax.numpy.fft." + func_name
if len(axes) != 2:
raise ValueError(
"%s only supports 2 axes. Got axes = %r."
% (full_name, axes)
)
return _fft_core(func_name, fft_type, a, s, axes, norm)
@_wraps(np.fft.fft2)
def fft2(a: ArrayLike, s: Optional[Shape] = None, axes: Sequence[int] = (-2,-1),
norm: Optional[str] = None) -> Array:
return _fft_core_2d('fft2', xla_client.FftType.FFT, a, s=s, axes=axes,
norm=norm)
@_wraps(np.fft.ifft2)
def ifft2(a: ArrayLike, s: Optional[Shape] = None, axes: Sequence[int] = (-2,-1),
norm: Optional[str] = None) -> Array:
return _fft_core_2d('ifft2', xla_client.FftType.IFFT, a, s=s, axes=axes,
norm=norm)
@_wraps(np.fft.rfft2)
def rfft2(a: ArrayLike, s: Optional[Shape] = None, axes: Sequence[int] = (-2,-1),
norm: Optional[str] = None) -> Array:
return _fft_core_2d('rfft2', xla_client.FftType.RFFT, a, s=s, axes=axes,
norm=norm)
@_wraps(np.fft.irfft2)
def irfft2(a: ArrayLike, s: Optional[Shape] = None, axes: Sequence[int] = (-2,-1),
norm: Optional[str] = None) -> Array:
return _fft_core_2d('irfft2', xla_client.FftType.IRFFT, a, s=s, axes=axes,
norm=norm)
@_wraps(np.fft.fftfreq, extra_params="""
dtype : Optional
The dtype of the returned frequencies. If not specified, JAX's default
floating point dtype will be used.
""")
def fftfreq(n: int, d: ArrayLike = 1.0, *, dtype=None) -> Array:
dtype = dtype or dtypes.canonicalize_dtype(jnp.float_)
if isinstance(n, (list, tuple)):
raise ValueError(
"The n argument of jax.numpy.fft.fftfreq only takes an int. "
"Got n = %s." % list(n))
elif isinstance(d, (list, tuple)):
raise ValueError(
"The d argument of jax.numpy.fft.fftfreq only takes a single value. "
"Got d = %s." % list(d))
k = jnp.zeros(n, dtype=dtype)
if n % 2 == 0:
# k[0: n // 2 - 1] = jnp.arange(0, n // 2 - 1)
k = k.at[0: n // 2].set( jnp.arange(0, n // 2, dtype=dtype))
# k[n // 2:] = jnp.arange(-n // 2, -1)
k = k.at[n // 2:].set( jnp.arange(-n // 2, 0, dtype=dtype))
else:
# k[0: (n - 1) // 2] = jnp.arange(0, (n - 1) // 2)
k = k.at[0: (n - 1) // 2 + 1].set(jnp.arange(0, (n - 1) // 2 + 1, dtype=dtype))
# k[(n - 1) // 2 + 1:] = jnp.arange(-(n - 1) // 2, -1)
k = k.at[(n - 1) // 2 + 1:].set(jnp.arange(-(n - 1) // 2, 0, dtype=dtype))
return k / jnp.array(d * n, dtype=dtype)
@_wraps(np.fft.rfftfreq, extra_params="""
dtype : Optional
The dtype of the returned frequencies. If not specified, JAX's default
floating point dtype will be used.
""")
def rfftfreq(n: int, d: ArrayLike = 1.0, *, dtype=None) -> Array:
dtype = dtype or dtypes.canonicalize_dtype(jnp.float_)
if isinstance(n, (list, tuple)):
raise ValueError(
"The n argument of jax.numpy.fft.rfftfreq only takes an int. "
"Got n = %s." % list(n))
elif isinstance(d, (list, tuple)):
raise ValueError(
"The d argument of jax.numpy.fft.rfftfreq only takes a single value. "
"Got d = %s." % list(d))
if n % 2 == 0:
k = jnp.arange(0, n // 2 + 1, dtype=dtype)
else:
k = jnp.arange(0, (n - 1) // 2 + 1, dtype=dtype)
return k / jnp.array(d * n, dtype=dtype)
@_wraps(np.fft.fftshift)
def fftshift(x: ArrayLike, axes: Union[None, int, Sequence[int]] = None) -> Array:
check_arraylike("fftshift", x)
x = jnp.asarray(x)
shift: Union[int, Sequence[int]]
if axes is None:
axes = tuple(range(x.ndim))
shift = [dim // 2 for dim in x.shape]
elif isinstance(axes, int):
shift = x.shape[axes] // 2
else:
shift = [x.shape[ax] // 2 for ax in axes]
return jnp.roll(x, shift, axes)
@_wraps(np.fft.ifftshift)
def ifftshift(x: ArrayLike, axes: Union[None, int, Sequence[int]] = None) -> Array:
check_arraylike("ifftshift", x)
x = jnp.asarray(x)
shift: Union[int, Sequence[int]]
if axes is None:
axes = tuple(range(x.ndim))
shift = [-(dim // 2) for dim in x.shape]
elif isinstance(axes, int):
shift = -(x.shape[axes] // 2)
else:
shift = [-(x.shape[ax] // 2) for ax in axes]
return jnp.roll(x, shift, axes)