129 lines
3.7 KiB
Python
129 lines
3.7 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""A simple functional keras model with one layer."""
|
|
|
|
import numpy as np
|
|
import tensorflow.compat.v2 as tf
|
|
|
|
import keras
|
|
from keras.distribute import model_collection_base
|
|
from keras.optimizers.legacy import gradient_descent
|
|
|
|
_BATCH_SIZE = 10
|
|
|
|
|
|
def _get_data_for_simple_models():
|
|
x_train = tf.constant(np.random.rand(1000, 3), dtype=tf.float32)
|
|
y_train = tf.constant(np.random.rand(1000, 5), dtype=tf.float32)
|
|
x_predict = tf.constant(np.random.rand(1000, 3), dtype=tf.float32)
|
|
|
|
return x_train, y_train, x_predict
|
|
|
|
|
|
class SimpleFunctionalModel(model_collection_base.ModelAndInput):
|
|
"""A simple functional model and its inputs."""
|
|
|
|
def get_model(self, **kwargs):
|
|
output_name = "output_1"
|
|
|
|
x = keras.layers.Input(shape=(3,), dtype=tf.float32)
|
|
y = keras.layers.Dense(5, dtype=tf.float32, name=output_name)(x)
|
|
|
|
model = keras.Model(inputs=x, outputs=y)
|
|
optimizer = gradient_descent.SGD(learning_rate=0.001)
|
|
model.compile(loss="mse", metrics=["mae"], optimizer=optimizer)
|
|
|
|
return model
|
|
|
|
def get_data(self):
|
|
return _get_data_for_simple_models()
|
|
|
|
def get_batch_size(self):
|
|
return _BATCH_SIZE
|
|
|
|
|
|
class SimpleSequentialModel(model_collection_base.ModelAndInput):
|
|
"""A simple sequential model and its inputs."""
|
|
|
|
def get_model(self, **kwargs):
|
|
output_name = "output_1"
|
|
|
|
model = keras.Sequential()
|
|
y = keras.layers.Dense(
|
|
5, dtype=tf.float32, name=output_name, input_dim=3
|
|
)
|
|
model.add(y)
|
|
optimizer = gradient_descent.SGD(learning_rate=0.001)
|
|
model.compile(loss="mse", metrics=["mae"], optimizer=optimizer)
|
|
|
|
return model
|
|
|
|
def get_data(self):
|
|
return _get_data_for_simple_models()
|
|
|
|
def get_batch_size(self):
|
|
return _BATCH_SIZE
|
|
|
|
|
|
class _SimpleModel(keras.Model):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self._dense_layer = keras.layers.Dense(5, dtype=tf.float32)
|
|
|
|
def call(self, inputs):
|
|
return self._dense_layer(inputs)
|
|
|
|
|
|
class SimpleSubclassModel(model_collection_base.ModelAndInput):
|
|
"""A simple subclass model and its data."""
|
|
|
|
def get_model(self, **kwargs):
|
|
model = _SimpleModel()
|
|
optimizer = gradient_descent.SGD(learning_rate=0.001)
|
|
model.compile(
|
|
loss="mse", metrics=["mae"], cloning=False, optimizer=optimizer
|
|
)
|
|
|
|
return model
|
|
|
|
def get_data(self):
|
|
return _get_data_for_simple_models()
|
|
|
|
def get_batch_size(self):
|
|
return _BATCH_SIZE
|
|
|
|
|
|
class _SimpleModule(tf.Module):
|
|
def __init__(self):
|
|
self.v = tf.Variable(3.0)
|
|
|
|
@tf.function
|
|
def __call__(self, x):
|
|
return self.v * x
|
|
|
|
|
|
class SimpleTFModuleModel(model_collection_base.ModelAndInput):
|
|
"""A simple model based on tf.Module and its data."""
|
|
|
|
def get_model(self, **kwargs):
|
|
model = _SimpleModule()
|
|
return model
|
|
|
|
def get_data(self):
|
|
return _get_data_for_simple_models()
|
|
|
|
def get_batch_size(self):
|
|
return _BATCH_SIZE
|