Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/dtensor/lazy_variable.py
2023-06-19 00:49:18 +02:00

259 lines
9.6 KiB
Python

# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Lazily initialized variables, useful for creating a symbolic Keras model."""
import threading
# isort: off
from tensorflow.core.framework import attr_value_pb2
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.ops import gen_resource_variable_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.trackable import base as trackable
from tensorflow.python.util import compat
from tensorflow.python.util import tf_contextlib
_DISABLE_LAZY_VARIABLE_INIT = threading.local()
def _infer_shape_dtype_and_create_handle(initial_value, shape, dtype, name):
"""Infer shape and dtype from initial_value and create a variable handle."""
with ops.name_scope(name, "Variable", skip_on_eager=False) as name:
handle_name = ops.name_from_scope_name(name)
unique_id = "%s_%d" % (handle_name, ops.uid())
# Use attr_scope and device(None) to simulate the behavior of
# colocate_with when the variable we want to colocate with doesn't
# yet exist.
device_context_manager = ops.NullContextmanager
attr = attr_value_pb2.AttrValue(
list=attr_value_pb2.AttrValue.ListValue(
s=[compat.as_bytes(f"loc:@{handle_name}")]
)
)
with ops.get_default_graph()._attr_scope({"_class": attr}):
with ops.name_scope("Initializer"), device_context_manager(None):
if not callable(initial_value):
if isinstance(
initial_value, trackable.CheckpointInitialValue
):
raise NotImplementedError(
"CheckpointInitialValue is not supported to be the "
"initial value of a lazy variable."
)
initial_value = ops.convert_to_tensor(
initial_value, name="initial_value", dtype=dtype
)
assert not callable(initial_value)
assert initial_value.shape.is_compatible_with(shape)
dtype = dtype or initial_value.dtype.base_dtype
shape = shape or initial_value.shape
assert dtype
assert shape
handle = (
resource_variable_ops._variable_handle_from_shape_and_dtype(
shape=shape,
dtype=dtype,
shared_name=None, # Never shared
name=name,
graph_mode=False,
initial_value=None,
)
)
# initial_value=initial_value if not callable(initial_value) else
# None)
return initial_value, shape, dtype, handle, handle_name, unique_id
class LazyInitVariable(resource_variable_ops.BaseResourceVariable):
"""Lazily initialized variables.
The major use case for this class is to serve as a memory efficient
alternative for tf.Variable. The resource handle of this class is point to
nothing, which mean it will raise error when its value is fetched in a eager
context. Having said that, it will perform like a normal tf.Variable when
using with graph tensor, like KerasTensor produced from tf.keras.Input.
"""
def __init__(
self,
initial_value=None,
trainable=None,
collections=None,
validate_shape=True,
caching_device=None,
name=None,
dtype=None,
variable_def=None,
import_scope=None,
constraint=None,
distribute_strategy=None,
synchronization=None,
aggregation=None,
shape=None,
**kwargs,
):
assert context.executing_eagerly() # To simplify the logic
assert variable_def is None # Not supported yet.
assert caching_device is None # Not supported yet
if initial_value is None:
raise ValueError(
"The `initial_value` arg to `tf.Variable` must "
"be specified except when you are not providing a "
"`variable_def`. You provided neither."
)
if (
isinstance(initial_value, ops.Tensor)
and hasattr(initial_value, "graph")
and initial_value.graph.building_function
):
raise ValueError(
f"Argument `initial_value` ({initial_value}) could not "
"be lifted out of a `tf.function`. "
f"(Tried to create variable with name='{name}'). "
"To avoid this error, when constructing `tf.Variable`s "
"inside of `tf.function` you can create the "
"`initial_value` tensor in a "
"`tf.init_scope` or pass a callable `initial_value` "
"(e.g., `tf.Variable(lambda : "
"tf.truncated_normal([10, 40]))`). "
"Please file a feature request if this "
"restriction inconveniences you."
)
if constraint is not None and not callable(constraint):
raise ValueError(
"Argument `constraint` must be None or a callable. "
f"a callable. Got a {type(constraint)}: {constraint}"
)
self._name = name
(
initial_value,
shape,
dtype,
handle,
handle_name,
unique_id,
) = _infer_shape_dtype_and_create_handle(
initial_value, shape, dtype, name
)
super().__init__(
distribute_strategy=distribute_strategy,
initial_value=initial_value,
shape=shape,
dtype=dtype,
name=name,
unique_id=unique_id,
handle_name=handle_name,
constraint=constraint,
handle=handle,
graph_element=None,
trainable=trainable,
synchronization=synchronization,
aggregation=aggregation,
in_graph_mode=False,
)
# TODO(scottzhu): This method and create_and_initialize might be removed if
# we decide to just use the tf.Variable to replace this class.
def initialize(self):
with ops.name_scope(self._name, "Variable", skip_on_eager=False):
with ops.colocate_with(self._handle), ops.name_scope("Initializer"):
if callable(self._initial_value):
initial_value = self._initial_value()
else:
initial_value = self._initial_value
if not initial_value.shape.is_compatible_with(self._shape):
raise ValueError(
"In this `tf.Variable` creation, the initial value's "
f"shape ({initial_value.shape}) is not compatible with "
"the explicitly supplied `shape` "
f"argument ({self._shape})."
)
assert self._dtype is initial_value.dtype.base_dtype
gen_resource_variable_ops.assign_variable_op(
self._handle, initial_value
)
def create_and_initialize(self):
if callable(self._initial_value):
initial_value = self._initial_value()
with ops.device(initial_value.device):
(
initial_value,
shape,
dtype,
handle,
handle_name,
unique_id,
) = _infer_shape_dtype_and_create_handle(
initial_value, self._shape, self._dtype, self._name
)
self.initialize()
super().__init__(
trainable=self._trainable,
shape=shape,
dtype=dtype,
handle=handle,
synchronization=self._synchronization,
constraint=self._constraint,
aggregation=self._aggregation,
distribute_strategy=self._distribute_strategy,
name=self._name,
unique_id=unique_id,
handle_name=handle_name,
graph_element=None,
initial_value=initial_value,
initializer_op=None,
is_initialized_op=None,
cached_value=None,
caching_device=None,
)
def _lazy_init_variable_creator(next_creator, **kwargs):
if getattr(_DISABLE_LAZY_VARIABLE_INIT, "disabled", False):
return next_creator(**kwargs)
else:
return LazyInitVariable(**kwargs)
@tf_contextlib.contextmanager
def lazy_init_scope():
with variable_scope.variable_creator_scope(_lazy_init_variable_creator):
yield
@tf_contextlib.contextmanager
def disable_init_variable_creator():
try:
global _DISABLE_LAZY_VARIABLE_INIT
existing_value = getattr(_DISABLE_LAZY_VARIABLE_INIT, "disabled", False)
_DISABLE_LAZY_VARIABLE_INIT.disabled = True
yield
finally:
_DISABLE_LAZY_VARIABLE_INIT.disabled = existing_value