Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/integration_test/models/dcgan.py
2023-06-19 00:49:18 +02:00

180 lines
5.9 KiB
Python

import tensorflow as tf
from tensorflow import keras
from keras.integration_test.models.input_spec import InputSpec
from keras.saving import serialization_lib
IMG_SIZE = (64, 64)
LATENT_DIM = 128
def get_data_spec(batch_size):
return InputSpec((batch_size,) + IMG_SIZE + (3,))
def get_input_preprocessor():
return None
class GAN(keras.Model):
def __init__(self, discriminator, generator, latent_dim):
super(GAN, self).__init__()
self.discriminator = discriminator
self.generator = generator
self.latent_dim = latent_dim
def compile(self, d_optimizer, g_optimizer, loss_fn, jit_compile=False):
super(GAN, self).compile(jit_compile=jit_compile)
self.d_optimizer = d_optimizer
self.g_optimizer = g_optimizer
self.loss_fn = loss_fn
self.d_loss_metric = keras.metrics.Mean(name="d_loss")
self.g_loss_metric = keras.metrics.Mean(name="g_loss")
@property
def metrics(self):
return [self.d_loss_metric, self.g_loss_metric]
def train_step(self, real_images):
batch_size = tf.shape(real_images)[0]
random_latent_vectors = tf.random.normal(
shape=(batch_size, self.latent_dim)
)
generated_images = self.generator(random_latent_vectors)
combined_images = tf.concat([generated_images, real_images], axis=0)
labels = tf.concat(
[tf.ones((batch_size, 1)), tf.zeros((batch_size, 1))], axis=0
)
labels += 0.05 * tf.random.uniform(tf.shape(labels))
with tf.GradientTape() as tape:
predictions = self.discriminator(combined_images)
d_loss = self.loss_fn(labels, predictions)
grads = tape.gradient(d_loss, self.discriminator.trainable_weights)
self.d_optimizer.apply_gradients(
zip(grads, self.discriminator.trainable_weights)
)
random_latent_vectors = tf.random.normal(
shape=(batch_size, self.latent_dim)
)
misleading_labels = tf.zeros((batch_size, 1))
with tf.GradientTape() as tape:
predictions = self.discriminator(
self.generator(random_latent_vectors)
)
g_loss = self.loss_fn(misleading_labels, predictions)
grads = tape.gradient(g_loss, self.generator.trainable_weights)
self.g_optimizer.apply_gradients(
zip(grads, self.generator.trainable_weights)
)
self.d_loss_metric.update_state(d_loss)
self.g_loss_metric.update_state(g_loss)
return {
"d_loss": self.d_loss_metric.result(),
"g_loss": self.g_loss_metric.result(),
}
def get_config(self):
return {
"discriminator": self.discriminator,
"generator": self.generator,
"latent_dim": self.latent_dim,
}
@classmethod
def from_config(cls, config):
discriminator = serialization_lib.deserialize_keras_object(
config["discriminator"]
)
generator = serialization_lib.deserialize_keras_object(
config["generator"]
)
latent_dim = config["latent_dim"]
return cls(discriminator, generator, latent_dim)
def get_compile_config(self):
return {
"loss_fn": self.loss_fn,
"d_optimizer": self.d_optimizer,
"g_optimizer": self.g_optimizer,
"jit_compile": self.jit_compile,
}
def compile_from_config(self, config):
loss_fn = serialization_lib.deserialize_keras_object(config["loss_fn"])
d_optimizer = serialization_lib.deserialize_keras_object(
config["d_optimizer"]
)
g_optimizer = serialization_lib.deserialize_keras_object(
config["g_optimizer"]
)
jit_compile = config["jit_compile"]
self.compile(
loss_fn=loss_fn,
d_optimizer=d_optimizer,
g_optimizer=g_optimizer,
jit_compile=jit_compile,
)
def get_model(
build=False, compile=False, jit_compile=False, include_preprocessing=True
):
discriminator = keras.Sequential(
[
keras.Input(shape=IMG_SIZE + (3,)),
keras.layers.Conv2D(64, kernel_size=4, strides=2, padding="same"),
keras.layers.LeakyReLU(alpha=0.2),
keras.layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
keras.layers.LeakyReLU(alpha=0.2),
keras.layers.Conv2D(128, kernel_size=4, strides=2, padding="same"),
keras.layers.LeakyReLU(alpha=0.2),
keras.layers.Flatten(),
keras.layers.Dropout(0.2),
keras.layers.Dense(1, activation="sigmoid"),
],
name="discriminator",
)
generator = keras.Sequential(
[
keras.Input(shape=(LATENT_DIM,)),
keras.layers.Dense(8 * 8 * 128),
keras.layers.Reshape((8, 8, 128)),
keras.layers.Conv2DTranspose(
128, kernel_size=4, strides=2, padding="same"
),
keras.layers.LeakyReLU(alpha=0.2),
keras.layers.Conv2DTranspose(
256, kernel_size=4, strides=2, padding="same"
),
keras.layers.LeakyReLU(alpha=0.2),
keras.layers.Conv2DTranspose(
512, kernel_size=4, strides=2, padding="same"
),
keras.layers.LeakyReLU(alpha=0.2),
keras.layers.Conv2D(
3, kernel_size=5, padding="same", activation="sigmoid"
),
],
name="generator",
)
gan = GAN(
discriminator=discriminator, generator=generator, latent_dim=LATENT_DIM
)
if compile:
gan.compile(
d_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
g_optimizer=keras.optimizers.Adam(learning_rate=0.0001),
loss_fn=keras.losses.BinaryCrossentropy(),
jit_compile=jit_compile,
)
return gan
def get_custom_objects():
return {"GAN": GAN}