78 lines
2.4 KiB
Python
78 lines
2.4 KiB
Python
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Thresholded Rectified Linear Unit activation layer."""
|
|
|
|
|
|
import tensorflow.compat.v2 as tf
|
|
|
|
from keras import backend
|
|
from keras.engine.base_layer import Layer
|
|
from keras.utils import tf_utils
|
|
|
|
# isort: off
|
|
from tensorflow.python.util.tf_export import keras_export
|
|
|
|
|
|
@keras_export("keras.layers.ThresholdedReLU")
|
|
class ThresholdedReLU(Layer):
|
|
"""Thresholded Rectified Linear Unit.
|
|
|
|
It follows:
|
|
|
|
```
|
|
f(x) = x for x > theta
|
|
f(x) = 0 otherwise`
|
|
```
|
|
|
|
Input shape:
|
|
Arbitrary. Use the keyword argument `input_shape`
|
|
(tuple of integers, does not include the samples axis)
|
|
when using this layer as the first layer in a model.
|
|
|
|
Output shape:
|
|
Same shape as the input.
|
|
|
|
Args:
|
|
theta: Float >= 0. Threshold location of activation.
|
|
"""
|
|
|
|
def __init__(self, theta=1.0, **kwargs):
|
|
super().__init__(**kwargs)
|
|
if theta is None:
|
|
raise ValueError(
|
|
"Theta of a Thresholded ReLU layer cannot be None, expecting a "
|
|
f"float. Received: {theta}"
|
|
)
|
|
if theta < 0:
|
|
raise ValueError(
|
|
"The theta value of a Thresholded ReLU layer "
|
|
f"should be >=0. Received: {theta}"
|
|
)
|
|
self.supports_masking = True
|
|
self.theta = backend.cast_to_floatx(theta)
|
|
|
|
def call(self, inputs):
|
|
dtype = self.compute_dtype
|
|
return inputs * tf.cast(tf.greater(inputs, self.theta), dtype)
|
|
|
|
def get_config(self):
|
|
config = {"theta": float(self.theta)}
|
|
base_config = super().get_config()
|
|
return dict(list(base_config.items()) + list(config.items()))
|
|
|
|
@tf_utils.shape_type_conversion
|
|
def compute_output_shape(self, input_shape):
|
|
return input_shape
|