Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/regularization/activity_regularization.py
2023-06-19 00:49:18 +02:00

57 lines
1.9 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the ActivityRegularization layer."""
from keras import regularizers
from keras.engine.base_layer import Layer
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.ActivityRegularization")
class ActivityRegularization(Layer):
"""Layer that applies an update to the cost function based input activity.
Args:
l1: L1 regularization factor (positive float).
l2: L2 regularization factor (positive float).
Input shape:
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as input.
"""
def __init__(self, l1=0.0, l2=0.0, **kwargs):
super().__init__(
activity_regularizer=regularizers.L1L2(l1=l1, l2=l2), **kwargs
)
self.supports_masking = True
self.l1 = l1
self.l2 = l2
def compute_output_shape(self, input_shape):
return input_shape
def get_config(self):
config = {"l1": self.l1, "l2": self.l2}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))