Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/reshaping/cropping3d.py
2023-06-19 00:49:18 +02:00

313 lines
12 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras cropping layer for 3D input."""
import tensorflow.compat.v2 as tf
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
from keras.utils import conv_utils
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.Cropping3D")
class Cropping3D(Layer):
"""Cropping layer for 3D data (e.g. spatial or spatio-temporal).
Examples:
>>> input_shape = (2, 28, 28, 10, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> y = tf.keras.layers.Cropping3D(cropping=(2, 4, 2))(x)
>>> print(y.shape)
(2, 24, 20, 6, 3)
Args:
cropping: Int, or tuple of 3 ints, or tuple of 3 tuples of 2 ints.
- If int: the same symmetric cropping
is applied to depth, height, and width.
- If tuple of 3 ints: interpreted as two different
symmetric cropping values for depth, height, and width:
`(symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop)`.
- If tuple of 3 tuples of 2 ints: interpreted as
`((left_dim1_crop, right_dim1_crop), (left_dim2_crop,
right_dim2_crop), (left_dim3_crop, right_dim3_crop))`
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `channels_first` corresponds to inputs with shape
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, first_axis_to_crop, second_axis_to_crop,
third_axis_to_crop, depth)`
- If `data_format` is `"channels_first"`:
`(batch_size, depth, first_axis_to_crop, second_axis_to_crop,
third_axis_to_crop)`
Output shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, first_cropped_axis, second_cropped_axis,
third_cropped_axis, depth)`
- If `data_format` is `"channels_first"`:
`(batch_size, depth, first_cropped_axis, second_cropped_axis,
third_cropped_axis)`
"""
def __init__(
self, cropping=((1, 1), (1, 1), (1, 1)), data_format=None, **kwargs
):
super().__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
if isinstance(cropping, int):
self.cropping = (
(cropping, cropping),
(cropping, cropping),
(cropping, cropping),
)
elif hasattr(cropping, "__len__"):
if len(cropping) != 3:
raise ValueError(
f"`cropping` should have 3 elements. Received: {cropping}."
)
dim1_cropping = conv_utils.normalize_tuple(
cropping[0], 2, "1st entry of cropping", allow_zero=True
)
dim2_cropping = conv_utils.normalize_tuple(
cropping[1], 2, "2nd entry of cropping", allow_zero=True
)
dim3_cropping = conv_utils.normalize_tuple(
cropping[2], 2, "3rd entry of cropping", allow_zero=True
)
self.cropping = (dim1_cropping, dim2_cropping, dim3_cropping)
else:
raise ValueError(
"`cropping` should be either an int, "
"a tuple of 3 ints "
"(symmetric_dim1_crop, symmetric_dim2_crop, "
"symmetric_dim3_crop), "
"or a tuple of 3 tuples of 2 ints "
"((left_dim1_crop, right_dim1_crop),"
" (left_dim2_crop, right_dim2_crop),"
" (left_dim3_crop, right_dim2_crop)). "
f"Received: {cropping}."
)
self.input_spec = InputSpec(ndim=5)
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape).as_list()
if self.data_format == "channels_first":
if input_shape[2] is not None:
dim1 = (
input_shape[2] - self.cropping[0][0] - self.cropping[0][1]
)
else:
dim1 = None
if input_shape[3] is not None:
dim2 = (
input_shape[3] - self.cropping[1][0] - self.cropping[1][1]
)
else:
dim2 = None
if input_shape[4] is not None:
dim3 = (
input_shape[4] - self.cropping[2][0] - self.cropping[2][1]
)
else:
dim3 = None
return tf.TensorShape(
[input_shape[0], input_shape[1], dim1, dim2, dim3]
)
elif self.data_format == "channels_last":
if input_shape[1] is not None:
dim1 = (
input_shape[1] - self.cropping[0][0] - self.cropping[0][1]
)
else:
dim1 = None
if input_shape[2] is not None:
dim2 = (
input_shape[2] - self.cropping[1][0] - self.cropping[1][1]
)
else:
dim2 = None
if input_shape[3] is not None:
dim3 = (
input_shape[3] - self.cropping[2][0] - self.cropping[2][1]
)
else:
dim3 = None
return tf.TensorShape(
[input_shape[0], dim1, dim2, dim3, input_shape[4]]
)
def call(self, inputs):
if self.data_format == "channels_first":
if (
self.cropping[0][1]
== self.cropping[1][1]
== self.cropping[2][1]
== 0
):
return inputs[
:,
:,
self.cropping[0][0] :,
self.cropping[1][0] :,
self.cropping[2][0] :,
]
elif self.cropping[0][1] == self.cropping[1][1] == 0:
return inputs[
:,
:,
self.cropping[0][0] :,
self.cropping[1][0] :,
self.cropping[2][0] : -self.cropping[2][1],
]
elif self.cropping[1][1] == self.cropping[2][1] == 0:
return inputs[
:,
:,
self.cropping[0][0] : -self.cropping[0][1],
self.cropping[1][0] :,
self.cropping[2][0] :,
]
elif self.cropping[0][1] == self.cropping[2][1] == 0:
return inputs[
:,
:,
self.cropping[0][0] :,
self.cropping[1][0] : -self.cropping[1][1],
self.cropping[2][0] :,
]
elif self.cropping[0][1] == 0:
return inputs[
:,
:,
self.cropping[0][0] :,
self.cropping[1][0] : -self.cropping[1][1],
self.cropping[2][0] : -self.cropping[2][1],
]
elif self.cropping[1][1] == 0:
return inputs[
:,
:,
self.cropping[0][0] : -self.cropping[0][1],
self.cropping[1][0] :,
self.cropping[2][0] : -self.cropping[2][1],
]
elif self.cropping[2][1] == 0:
return inputs[
:,
:,
self.cropping[0][0] : -self.cropping[0][1],
self.cropping[1][0] : -self.cropping[1][1],
self.cropping[2][0] :,
]
return inputs[
:,
:,
self.cropping[0][0] : -self.cropping[0][1],
self.cropping[1][0] : -self.cropping[1][1],
self.cropping[2][0] : -self.cropping[2][1],
]
else:
if (
self.cropping[0][1]
== self.cropping[1][1]
== self.cropping[2][1]
== 0
):
return inputs[
:,
self.cropping[0][0] :,
self.cropping[1][0] :,
self.cropping[2][0] :,
:,
]
elif self.cropping[0][1] == self.cropping[1][1] == 0:
return inputs[
:,
self.cropping[0][0] :,
self.cropping[1][0] :,
self.cropping[2][0] : -self.cropping[2][1],
:,
]
elif self.cropping[1][1] == self.cropping[2][1] == 0:
return inputs[
:,
self.cropping[0][0] : -self.cropping[0][1],
self.cropping[1][0] :,
self.cropping[2][0] :,
:,
]
elif self.cropping[0][1] == self.cropping[2][1] == 0:
return inputs[
:,
self.cropping[0][0] :,
self.cropping[1][0] : -self.cropping[1][1],
self.cropping[2][0] :,
:,
]
elif self.cropping[0][1] == 0:
return inputs[
:,
self.cropping[0][0] :,
self.cropping[1][0] : -self.cropping[1][1],
self.cropping[2][0] : -self.cropping[2][1],
:,
]
elif self.cropping[1][1] == 0:
return inputs[
:,
self.cropping[0][0] : -self.cropping[0][1],
self.cropping[1][0] :,
self.cropping[2][0] : -self.cropping[2][1],
:,
]
elif self.cropping[2][1] == 0:
return inputs[
:,
self.cropping[0][0] : -self.cropping[0][1],
self.cropping[1][0] : -self.cropping[1][1],
self.cropping[2][0] :,
:,
]
return inputs[
:,
self.cropping[0][0] : -self.cropping[0][1],
self.cropping[1][0] : -self.cropping[1][1],
self.cropping[2][0] : -self.cropping[2][1],
:,
]
def get_config(self):
config = {"cropping": self.cropping, "data_format": self.data_format}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))