Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/reshaping/permute.py
2023-06-19 00:49:18 +02:00

86 lines
2.9 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains the Permute layer."""
import copy
import tensorflow.compat.v2 as tf
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.Permute")
class Permute(Layer):
"""Permutes the dimensions of the input according to a given pattern.
Useful e.g. connecting RNNs and convnets.
Example:
```python
model = Sequential()
model.add(Permute((2, 1), input_shape=(10, 64)))
# now: model.output_shape == (None, 64, 10)
# note: `None` is the batch dimension
```
Args:
dims: Tuple of integers. Permutation pattern does not include the
samples dimension. Indexing starts at 1.
For instance, `(2, 1)` permutes the first and second dimensions
of the input.
Input shape:
Arbitrary. Use the keyword argument `input_shape`
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape:
Same as the input shape, but with the dimensions re-ordered according
to the specified pattern.
"""
def __init__(self, dims, **kwargs):
super().__init__(**kwargs)
self.dims = tuple(dims)
if sorted(dims) != list(range(1, len(dims) + 1)):
raise ValueError(
"Invalid permutation argument `dims` for Permute Layer. "
"The set of indices in `dims` must be consecutive and start "
f"from 1. Received dims={dims}"
)
self.input_spec = InputSpec(ndim=len(self.dims) + 1)
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape).as_list()
output_shape = copy.copy(input_shape)
for i, dim in enumerate(self.dims):
target_dim = input_shape[dim]
output_shape[i + 1] = target_dim
return tf.TensorShape(output_shape)
def call(self, inputs):
return tf.transpose(inputs, perm=(0,) + self.dims)
def get_config(self):
config = {"dims": self.dims}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))