Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/layers/reshaping/up_sampling1d.py
2023-06-19 00:49:18 +02:00

85 lines
2.5 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras upsampling layer for 1D inputs."""
import tensorflow.compat.v2 as tf
from keras import backend
from keras.engine.base_layer import Layer
from keras.engine.input_spec import InputSpec
# isort: off
from tensorflow.python.util.tf_export import keras_export
@keras_export("keras.layers.UpSampling1D")
class UpSampling1D(Layer):
"""Upsampling layer for 1D inputs.
Repeats each temporal step `size` times along the time axis.
Examples:
>>> input_shape = (2, 2, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> print(x)
[[[ 0 1 2]
[ 3 4 5]]
[[ 6 7 8]
[ 9 10 11]]]
>>> y = tf.keras.layers.UpSampling1D(size=2)(x)
>>> print(y)
tf.Tensor(
[[[ 0 1 2]
[ 0 1 2]
[ 3 4 5]
[ 3 4 5]]
[[ 6 7 8]
[ 6 7 8]
[ 9 10 11]
[ 9 10 11]]], shape=(2, 4, 3), dtype=int64)
Args:
size: Integer. Upsampling factor.
Input shape:
3D tensor with shape: `(batch_size, steps, features)`.
Output shape:
3D tensor with shape: `(batch_size, upsampled_steps, features)`.
"""
def __init__(self, size=2, **kwargs):
super().__init__(**kwargs)
self.size = int(size)
self.input_spec = InputSpec(ndim=3)
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape).as_list()
size = (
self.size * input_shape[1] if input_shape[1] is not None else None
)
return tf.TensorShape([input_shape[0], size, input_shape[2]])
def call(self, inputs):
output = backend.repeat_elements(inputs, self.size, axis=1)
return output
def get_config(self):
config = {"size": self.size}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))