Intelegentny_Pszczelarz/.venv/Lib/site-packages/keras/metrics/confusion_metrics.py
2023-06-19 00:49:18 +02:00

1707 lines
64 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Confusion metrics, i.e. metrics based on True/False positives/negatives."""
import abc
import numpy as np
import tensorflow.compat.v2 as tf
from keras import activations
from keras import backend
from keras.dtensor import utils as dtensor_utils
from keras.metrics import base_metric
from keras.utils import metrics_utils
from keras.utils.generic_utils import to_list
from keras.utils.tf_utils import is_tensor_or_variable
# isort: off
from tensorflow.python.util.tf_export import keras_export
class _ConfusionMatrixConditionCount(base_metric.Metric):
"""Calculates the number of the given confusion matrix condition.
Args:
confusion_matrix_cond: One of `metrics_utils.ConfusionMatrix` conditions.
thresholds: (Optional) Defaults to 0.5. A float value or a python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is `true`, below is `false`). One metric
value is generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
"""
def __init__(
self, confusion_matrix_cond, thresholds=None, name=None, dtype=None
):
super().__init__(name=name, dtype=dtype)
self._confusion_matrix_cond = confusion_matrix_cond
self.init_thresholds = thresholds
self.thresholds = metrics_utils.parse_init_thresholds(
thresholds, default_threshold=0.5
)
self._thresholds_distributed_evenly = (
metrics_utils.is_evenly_distributed_thresholds(self.thresholds)
)
self.accumulator = self.add_weight(
"accumulator", shape=(len(self.thresholds),), initializer="zeros"
)
def update_state(self, y_true, y_pred, sample_weight=None):
"""Accumulates the metric statistics.
Args:
y_true: The ground truth values.
y_pred: The predicted values.
sample_weight: Optional weighting of each example. Defaults to 1. Can
be a `Tensor` whose rank is either 0, or the same rank as `y_true`,
and must be broadcastable to `y_true`.
Returns:
Update op.
"""
return metrics_utils.update_confusion_matrix_variables(
{self._confusion_matrix_cond: self.accumulator},
y_true,
y_pred,
thresholds=self.thresholds,
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
sample_weight=sample_weight,
)
def result(self):
if len(self.thresholds) == 1:
result = self.accumulator[0]
else:
result = self.accumulator
return tf.convert_to_tensor(result)
def reset_state(self):
backend.batch_set_value(
[(v, np.zeros(v.shape.as_list())) for v in self.variables]
)
def get_config(self):
config = {"thresholds": self.init_thresholds}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export("keras.metrics.FalsePositives")
class FalsePositives(_ConfusionMatrixConditionCount):
"""Calculates the number of false positives.
If `sample_weight` is given, calculates the sum of the weights of
false positives. This metric creates one local variable, `accumulator`
that is used to keep track of the number of false positives.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
Args:
thresholds: (Optional) Defaults to 0.5. A float value, or a Python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is `true`, below is `false`). If used with a
loss function that sets `from_logits=True` (i.e. no sigmoid applied to
predictions), `thresholds` should be set to 0. One metric value is
generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.FalsePositives()
>>> m.update_state([0, 1, 0, 0], [0, 0, 1, 1])
>>> m.result().numpy()
2.0
>>> m.reset_state()
>>> m.update_state([0, 1, 0, 0], [0, 0, 1, 1], sample_weight=[0, 0, 1, 0])
>>> m.result().numpy()
1.0
Usage with `compile()` API:
```python
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.FalsePositives()])
```
Usage with a loss with `from_logits=True`:
```python
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.FalsePositives(thresholds=0)])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, thresholds=None, name=None, dtype=None):
super().__init__(
confusion_matrix_cond=metrics_utils.ConfusionMatrix.FALSE_POSITIVES,
thresholds=thresholds,
name=name,
dtype=dtype,
)
@keras_export("keras.metrics.FalseNegatives")
class FalseNegatives(_ConfusionMatrixConditionCount):
"""Calculates the number of false negatives.
If `sample_weight` is given, calculates the sum of the weights of
false negatives. This metric creates one local variable, `accumulator`
that is used to keep track of the number of false negatives.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
Args:
thresholds: (Optional) Defaults to 0.5. A float value, or a Python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is `true`, below is `false`). If used with a
loss function that sets `from_logits=True` (i.e. no sigmoid applied to
predictions), `thresholds` should be set to 0. One metric value is
generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.FalseNegatives()
>>> m.update_state([0, 1, 1, 1], [0, 1, 0, 0])
>>> m.result().numpy()
2.0
>>> m.reset_state()
>>> m.update_state([0, 1, 1, 1], [0, 1, 0, 0], sample_weight=[0, 0, 1, 0])
>>> m.result().numpy()
1.0
Usage with `compile()` API:
```python
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.FalseNegatives()])
```
Usage with a loss with `from_logits=True`:
```python
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.FalseNegatives(thresholds=0)])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, thresholds=None, name=None, dtype=None):
super().__init__(
confusion_matrix_cond=metrics_utils.ConfusionMatrix.FALSE_NEGATIVES,
thresholds=thresholds,
name=name,
dtype=dtype,
)
@keras_export("keras.metrics.TrueNegatives")
class TrueNegatives(_ConfusionMatrixConditionCount):
"""Calculates the number of true negatives.
If `sample_weight` is given, calculates the sum of the weights of
true negatives. This metric creates one local variable, `accumulator`
that is used to keep track of the number of true negatives.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
Args:
thresholds: (Optional) Defaults to 0.5. A float value, or a Python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is `true`, below is `false`). If used with a
loss function that sets `from_logits=True` (i.e. no sigmoid applied to
predictions), `thresholds` should be set to 0. One metric value is
generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.TrueNegatives()
>>> m.update_state([0, 1, 0, 0], [1, 1, 0, 0])
>>> m.result().numpy()
2.0
>>> m.reset_state()
>>> m.update_state([0, 1, 0, 0], [1, 1, 0, 0], sample_weight=[0, 0, 1, 0])
>>> m.result().numpy()
1.0
Usage with `compile()` API:
```python
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.TrueNegatives()])
```
Usage with a loss with `from_logits=True`:
```python
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.TrueNegatives(thresholds=0)])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, thresholds=None, name=None, dtype=None):
super().__init__(
confusion_matrix_cond=metrics_utils.ConfusionMatrix.TRUE_NEGATIVES,
thresholds=thresholds,
name=name,
dtype=dtype,
)
@keras_export("keras.metrics.TruePositives")
class TruePositives(_ConfusionMatrixConditionCount):
"""Calculates the number of true positives.
If `sample_weight` is given, calculates the sum of the weights of
true positives. This metric creates one local variable, `true_positives`
that is used to keep track of the number of true positives.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
Args:
thresholds: (Optional) Defaults to 0.5. A float value, or a Python
list/tuple of float threshold values in [0, 1]. A threshold is compared
with prediction values to determine the truth value of predictions
(i.e., above the threshold is `true`, below is `false`). If used with a
loss function that sets `from_logits=True` (i.e. no sigmoid applied to
predictions), `thresholds` should be set to 0. One metric value is
generated for each threshold value.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.TruePositives()
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1])
>>> m.result().numpy()
2.0
>>> m.reset_state()
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])
>>> m.result().numpy()
1.0
Usage with `compile()` API:
```python
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.TruePositives()])
```
Usage with a loss with `from_logits=True`:
```python
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.TruePositives(thresholds=0)])
```
"""
@dtensor_utils.inject_mesh
def __init__(self, thresholds=None, name=None, dtype=None):
super().__init__(
confusion_matrix_cond=metrics_utils.ConfusionMatrix.TRUE_POSITIVES,
thresholds=thresholds,
name=name,
dtype=dtype,
)
@keras_export("keras.metrics.Precision")
class Precision(base_metric.Metric):
"""Computes the precision of the predictions with respect to the labels.
The metric creates two local variables, `true_positives` and
`false_positives` that are used to compute the precision. This value is
ultimately returned as `precision`, an idempotent operation that simply
divides `true_positives` by the sum of `true_positives` and
`false_positives`.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
If `top_k` is set, we'll calculate precision as how often on average a class
among the top-k classes with the highest predicted values of a batch entry
is correct and can be found in the label for that entry.
If `class_id` is specified, we calculate precision by considering only the
entries in the batch for which `class_id` is above the threshold and/or in
the top-k highest predictions, and computing the fraction of them for which
`class_id` is indeed a correct label.
Args:
thresholds: (Optional) A float value, or a Python list/tuple of float
threshold values in [0, 1]. A threshold is compared with prediction
values to determine the truth value of predictions (i.e., above the
threshold is `true`, below is `false`). If used with a loss function
that sets `from_logits=True` (i.e. no sigmoid applied to predictions),
`thresholds` should be set to 0. One metric value is generated for each
threshold value. If neither thresholds nor top_k are set, the default is
to calculate precision with `thresholds=0.5`.
top_k: (Optional) Unset by default. An int value specifying the top-k
predictions to consider when calculating precision.
class_id: (Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval `[0, num_classes)`, where
`num_classes` is the last dimension of predictions.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.Precision()
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1])
>>> m.result().numpy()
0.6666667
>>> m.reset_state()
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])
>>> m.result().numpy()
1.0
>>> # With top_k=2, it will calculate precision over y_true[:2]
>>> # and y_pred[:2]
>>> m = tf.keras.metrics.Precision(top_k=2)
>>> m.update_state([0, 0, 1, 1], [1, 1, 1, 1])
>>> m.result().numpy()
0.0
>>> # With top_k=4, it will calculate precision over y_true[:4]
>>> # and y_pred[:4]
>>> m = tf.keras.metrics.Precision(top_k=4)
>>> m.update_state([0, 0, 1, 1], [1, 1, 1, 1])
>>> m.result().numpy()
0.5
Usage with `compile()` API:
```python
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.Precision()])
```
Usage with a loss with `from_logits=True`:
```python
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.Precision(thresholds=0)])
```
"""
@dtensor_utils.inject_mesh
def __init__(
self, thresholds=None, top_k=None, class_id=None, name=None, dtype=None
):
super().__init__(name=name, dtype=dtype)
self.init_thresholds = thresholds
self.top_k = top_k
self.class_id = class_id
default_threshold = 0.5 if top_k is None else metrics_utils.NEG_INF
self.thresholds = metrics_utils.parse_init_thresholds(
thresholds, default_threshold=default_threshold
)
self._thresholds_distributed_evenly = (
metrics_utils.is_evenly_distributed_thresholds(self.thresholds)
)
self.true_positives = self.add_weight(
"true_positives", shape=(len(self.thresholds),), initializer="zeros"
)
self.false_positives = self.add_weight(
"false_positives",
shape=(len(self.thresholds),),
initializer="zeros",
)
def update_state(self, y_true, y_pred, sample_weight=None):
"""Accumulates true positive and false positive statistics.
Args:
y_true: The ground truth values, with the same dimensions as `y_pred`.
Will be cast to `bool`.
y_pred: The predicted values. Each element must be in the range
`[0, 1]`.
sample_weight: Optional weighting of each example. Defaults to 1. Can
be a `Tensor` whose rank is either 0, or the same rank as `y_true`,
and must be broadcastable to `y_true`.
Returns:
Update op.
"""
return metrics_utils.update_confusion_matrix_variables(
{
metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501
metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, # noqa: E501
},
y_true,
y_pred,
thresholds=self.thresholds,
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
top_k=self.top_k,
class_id=self.class_id,
sample_weight=sample_weight,
)
def result(self):
result = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_positives),
)
return result[0] if len(self.thresholds) == 1 else result
def reset_state(self):
num_thresholds = len(to_list(self.thresholds))
backend.batch_set_value(
[
(v, np.zeros((num_thresholds,)))
for v in (self.true_positives, self.false_positives)
]
)
def get_config(self):
config = {
"thresholds": self.init_thresholds,
"top_k": self.top_k,
"class_id": self.class_id,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export("keras.metrics.Recall")
class Recall(base_metric.Metric):
"""Computes the recall of the predictions with respect to the labels.
This metric creates two local variables, `true_positives` and
`false_negatives`, that are used to compute the recall. This value is
ultimately returned as `recall`, an idempotent operation that simply divides
`true_positives` by the sum of `true_positives` and `false_negatives`.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
If `top_k` is set, recall will be computed as how often on average a class
among the labels of a batch entry is in the top-k predictions.
If `class_id` is specified, we calculate recall by considering only the
entries in the batch for which `class_id` is in the label, and computing the
fraction of them for which `class_id` is above the threshold and/or in the
top-k predictions.
Args:
thresholds: (Optional) A float value, or a Python list/tuple of float
threshold values in [0, 1]. A threshold is compared with prediction
values to determine the truth value of predictions (i.e., above the
threshold is `true`, below is `false`). If used with a loss function
that sets `from_logits=True` (i.e. no sigmoid applied to predictions),
`thresholds` should be set to 0. One metric value is generated for each
threshold value. If neither thresholds nor top_k are set, the default is
to calculate recall with `thresholds=0.5`.
top_k: (Optional) Unset by default. An int value specifying the top-k
predictions to consider when calculating recall.
class_id: (Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval `[0, num_classes)`, where
`num_classes` is the last dimension of predictions.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.Recall()
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1])
>>> m.result().numpy()
0.6666667
>>> m.reset_state()
>>> m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])
>>> m.result().numpy()
1.0
Usage with `compile()` API:
```python
model.compile(optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.Recall()])
```
Usage with a loss with `from_logits=True`:
```python
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.Recall(thresholds=0)])
```
"""
@dtensor_utils.inject_mesh
def __init__(
self, thresholds=None, top_k=None, class_id=None, name=None, dtype=None
):
super().__init__(name=name, dtype=dtype)
self.init_thresholds = thresholds
self.top_k = top_k
self.class_id = class_id
default_threshold = 0.5 if top_k is None else metrics_utils.NEG_INF
self.thresholds = metrics_utils.parse_init_thresholds(
thresholds, default_threshold=default_threshold
)
self._thresholds_distributed_evenly = (
metrics_utils.is_evenly_distributed_thresholds(self.thresholds)
)
self.true_positives = self.add_weight(
"true_positives", shape=(len(self.thresholds),), initializer="zeros"
)
self.false_negatives = self.add_weight(
"false_negatives",
shape=(len(self.thresholds),),
initializer="zeros",
)
def update_state(self, y_true, y_pred, sample_weight=None):
"""Accumulates true positive and false negative statistics.
Args:
y_true: The ground truth values, with the same dimensions as `y_pred`.
Will be cast to `bool`.
y_pred: The predicted values. Each element must be in the range
`[0, 1]`.
sample_weight: Optional weighting of each example. Defaults to 1. Can
be a `Tensor` whose rank is either 0, or the same rank as `y_true`,
and must be broadcastable to `y_true`.
Returns:
Update op.
"""
return metrics_utils.update_confusion_matrix_variables(
{
metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501
metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, # noqa: E501
},
y_true,
y_pred,
thresholds=self.thresholds,
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
top_k=self.top_k,
class_id=self.class_id,
sample_weight=sample_weight,
)
def result(self):
result = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_negatives),
)
return result[0] if len(self.thresholds) == 1 else result
def reset_state(self):
num_thresholds = len(to_list(self.thresholds))
backend.batch_set_value(
[
(v, np.zeros((num_thresholds,)))
for v in (self.true_positives, self.false_negatives)
]
)
def get_config(self):
config = {
"thresholds": self.init_thresholds,
"top_k": self.top_k,
"class_id": self.class_id,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
class SensitivitySpecificityBase(base_metric.Metric, metaclass=abc.ABCMeta):
"""Abstract base class for computing sensitivity and specificity.
For additional information about specificity and sensitivity, see
[the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity).
"""
def __init__(
self, value, num_thresholds=200, class_id=None, name=None, dtype=None
):
super().__init__(name=name, dtype=dtype)
if num_thresholds <= 0:
raise ValueError(
"Argument `num_thresholds` must be an integer > 0. "
f"Received: num_thresholds={num_thresholds}"
)
self.value = value
self.class_id = class_id
self.true_positives = self.add_weight(
"true_positives", shape=(num_thresholds,), initializer="zeros"
)
self.true_negatives = self.add_weight(
"true_negatives", shape=(num_thresholds,), initializer="zeros"
)
self.false_positives = self.add_weight(
"false_positives", shape=(num_thresholds,), initializer="zeros"
)
self.false_negatives = self.add_weight(
"false_negatives", shape=(num_thresholds,), initializer="zeros"
)
# Compute `num_thresholds` thresholds in [0, 1]
if num_thresholds == 1:
self.thresholds = [0.5]
self._thresholds_distributed_evenly = False
else:
thresholds = [
(i + 1) * 1.0 / (num_thresholds - 1)
for i in range(num_thresholds - 2)
]
self.thresholds = [0.0] + thresholds + [1.0]
self._thresholds_distributed_evenly = True
def update_state(self, y_true, y_pred, sample_weight=None):
"""Accumulates confusion matrix statistics.
Args:
y_true: The ground truth values.
y_pred: The predicted values.
sample_weight: Optional weighting of each example. Defaults to 1. Can
be a `Tensor` whose rank is either 0, or the same rank as `y_true`,
and must be broadcastable to `y_true`.
Returns:
Update op.
"""
return metrics_utils.update_confusion_matrix_variables(
{
metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501
metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives, # noqa: E501
metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, # noqa: E501
metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, # noqa: E501
},
y_true,
y_pred,
thresholds=self.thresholds,
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
class_id=self.class_id,
sample_weight=sample_weight,
)
def reset_state(self):
num_thresholds = len(self.thresholds)
confusion_matrix_variables = (
self.true_positives,
self.true_negatives,
self.false_positives,
self.false_negatives,
)
backend.batch_set_value(
[
(v, np.zeros((num_thresholds,)))
for v in confusion_matrix_variables
]
)
def get_config(self):
config = {"class_id": self.class_id}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
def _find_max_under_constraint(self, constrained, dependent, predicate):
"""Returns the maximum of dependent_statistic that satisfies the
constraint.
Args:
constrained: Over these values the constraint
is specified. A rank-1 tensor.
dependent: From these values the maximum that satiesfies the
constraint is selected. Values in this tensor and in
`constrained` are linked by having the same threshold at each
position, hence this tensor must have the same shape.
predicate: A binary boolean functor to be applied to arguments
`constrained` and `self.value`, e.g. `tf.greater`.
Returns:
maximal dependent value, if no value satiesfies the constraint 0.0.
"""
feasible = tf.where(predicate(constrained, self.value))
feasible_exists = tf.greater(tf.size(feasible), 0)
max_dependent = tf.reduce_max(tf.gather(dependent, feasible))
return tf.where(feasible_exists, max_dependent, 0.0)
@keras_export("keras.metrics.SensitivityAtSpecificity")
class SensitivityAtSpecificity(SensitivitySpecificityBase):
"""Computes best sensitivity where specificity is >= specified value.
the sensitivity at a given specificity.
`Sensitivity` measures the proportion of actual positives that are correctly
identified as such (tp / (tp + fn)).
`Specificity` measures the proportion of actual negatives that are correctly
identified as such (tn / (tn + fp)).
This metric creates four local variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives` that are used to
compute the sensitivity at the given specificity. The threshold for the
given specificity value is computed and used to evaluate the corresponding
sensitivity.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
If `class_id` is specified, we calculate precision by considering only the
entries in the batch for which `class_id` is above the threshold
predictions, and computing the fraction of them for which `class_id` is
indeed a correct label.
For additional information about specificity and sensitivity, see
[the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity).
Args:
specificity: A scalar value in range `[0, 1]`.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given specificity.
class_id: (Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval `[0, num_classes)`, where
`num_classes` is the last dimension of predictions.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.SensitivityAtSpecificity(0.5)
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8])
>>> m.result().numpy()
0.5
>>> m.reset_state()
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8],
... sample_weight=[1, 1, 2, 2, 1])
>>> m.result().numpy()
0.333333
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.SensitivityAtSpecificity()])
```
"""
@dtensor_utils.inject_mesh
def __init__(
self,
specificity,
num_thresholds=200,
class_id=None,
name=None,
dtype=None,
):
if specificity < 0 or specificity > 1:
raise ValueError(
"Argument `specificity` must be in the range [0, 1]. "
f"Received: specificity={specificity}"
)
self.specificity = specificity
self.num_thresholds = num_thresholds
super().__init__(
specificity,
num_thresholds=num_thresholds,
class_id=class_id,
name=name,
dtype=dtype,
)
def result(self):
specificities = tf.math.divide_no_nan(
self.true_negatives,
tf.math.add(self.true_negatives, self.false_positives),
)
sensitivities = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_negatives),
)
return self._find_max_under_constraint(
specificities, sensitivities, tf.greater_equal
)
def get_config(self):
config = {
"num_thresholds": self.num_thresholds,
"specificity": self.specificity,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export("keras.metrics.SpecificityAtSensitivity")
class SpecificityAtSensitivity(SensitivitySpecificityBase):
"""Computes best specificity where sensitivity is >= specified value.
`Sensitivity` measures the proportion of actual positives that are correctly
identified as such (tp / (tp + fn)).
`Specificity` measures the proportion of actual negatives that are correctly
identified as such (tn / (tn + fp)).
This metric creates four local variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives` that are used to
compute the specificity at the given sensitivity. The threshold for the
given sensitivity value is computed and used to evaluate the corresponding
specificity.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
If `class_id` is specified, we calculate precision by considering only the
entries in the batch for which `class_id` is above the threshold
predictions, and computing the fraction of them for which `class_id` is
indeed a correct label.
For additional information about specificity and sensitivity, see
[the following](https://en.wikipedia.org/wiki/Sensitivity_and_specificity).
Args:
sensitivity: A scalar value in range `[0, 1]`.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given sensitivity.
class_id: (Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval `[0, num_classes)`, where
`num_classes` is the last dimension of predictions.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.SpecificityAtSensitivity(0.5)
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8])
>>> m.result().numpy()
0.66666667
>>> m.reset_state()
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8],
... sample_weight=[1, 1, 2, 2, 2])
>>> m.result().numpy()
0.5
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.SpecificityAtSensitivity()])
```
"""
@dtensor_utils.inject_mesh
def __init__(
self,
sensitivity,
num_thresholds=200,
class_id=None,
name=None,
dtype=None,
):
if sensitivity < 0 or sensitivity > 1:
raise ValueError(
"Argument `sensitivity` must be in the range [0, 1]. "
f"Received: sensitivity={sensitivity}"
)
self.sensitivity = sensitivity
self.num_thresholds = num_thresholds
super().__init__(
sensitivity,
num_thresholds=num_thresholds,
class_id=class_id,
name=name,
dtype=dtype,
)
def result(self):
sensitivities = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_negatives),
)
specificities = tf.math.divide_no_nan(
self.true_negatives,
tf.math.add(self.true_negatives, self.false_positives),
)
return self._find_max_under_constraint(
sensitivities, specificities, tf.greater_equal
)
def get_config(self):
config = {
"num_thresholds": self.num_thresholds,
"sensitivity": self.sensitivity,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export("keras.metrics.PrecisionAtRecall")
class PrecisionAtRecall(SensitivitySpecificityBase):
"""Computes best precision where recall is >= specified value.
This metric creates four local variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives` that are used to
compute the precision at the given recall. The threshold for the given
recall value is computed and used to evaluate the corresponding precision.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
If `class_id` is specified, we calculate precision by considering only the
entries in the batch for which `class_id` is above the threshold
predictions, and computing the fraction of them for which `class_id` is
indeed a correct label.
Args:
recall: A scalar value in range `[0, 1]`.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given recall.
class_id: (Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval `[0, num_classes)`, where
`num_classes` is the last dimension of predictions.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.PrecisionAtRecall(0.5)
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8])
>>> m.result().numpy()
0.5
>>> m.reset_state()
>>> m.update_state([0, 0, 0, 1, 1], [0, 0.3, 0.8, 0.3, 0.8],
... sample_weight=[2, 2, 2, 1, 1])
>>> m.result().numpy()
0.33333333
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.PrecisionAtRecall(recall=0.8)])
```
"""
@dtensor_utils.inject_mesh
def __init__(
self, recall, num_thresholds=200, class_id=None, name=None, dtype=None
):
if recall < 0 or recall > 1:
raise ValueError(
"Argument `recall` must be in the range [0, 1]. "
f"Received: recall={recall}"
)
self.recall = recall
self.num_thresholds = num_thresholds
super().__init__(
value=recall,
num_thresholds=num_thresholds,
class_id=class_id,
name=name,
dtype=dtype,
)
def result(self):
recalls = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_negatives),
)
precisions = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_positives),
)
return self._find_max_under_constraint(
recalls, precisions, tf.greater_equal
)
def get_config(self):
config = {"num_thresholds": self.num_thresholds, "recall": self.recall}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export("keras.metrics.RecallAtPrecision")
class RecallAtPrecision(SensitivitySpecificityBase):
"""Computes best recall where precision is >= specified value.
For a given score-label-distribution the required precision might not
be achievable, in this case 0.0 is returned as recall.
This metric creates four local variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives` that are used to
compute the recall at the given precision. The threshold for the given
precision value is computed and used to evaluate the corresponding recall.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
If `class_id` is specified, we calculate precision by considering only the
entries in the batch for which `class_id` is above the threshold
predictions, and computing the fraction of them for which `class_id` is
indeed a correct label.
Args:
precision: A scalar value in range `[0, 1]`.
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use for matching the given precision.
class_id: (Optional) Integer class ID for which we want binary metrics.
This must be in the half-open interval `[0, num_classes)`, where
`num_classes` is the last dimension of predictions.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
Standalone usage:
>>> m = tf.keras.metrics.RecallAtPrecision(0.8)
>>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9])
>>> m.result().numpy()
0.5
>>> m.reset_state()
>>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9],
... sample_weight=[1, 0, 0, 1])
>>> m.result().numpy()
1.0
Usage with `compile()` API:
```python
model.compile(
optimizer='sgd',
loss='mse',
metrics=[tf.keras.metrics.RecallAtPrecision(precision=0.8)])
```
"""
@dtensor_utils.inject_mesh
def __init__(
self,
precision,
num_thresholds=200,
class_id=None,
name=None,
dtype=None,
):
if precision < 0 or precision > 1:
raise ValueError(
"Argument `precision` must be in the range [0, 1]. "
f"Received: precision={precision}"
)
self.precision = precision
self.num_thresholds = num_thresholds
super().__init__(
value=precision,
num_thresholds=num_thresholds,
class_id=class_id,
name=name,
dtype=dtype,
)
def result(self):
precisions = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_positives),
)
recalls = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_negatives),
)
return self._find_max_under_constraint(
precisions, recalls, tf.greater_equal
)
def get_config(self):
config = {
"num_thresholds": self.num_thresholds,
"precision": self.precision,
}
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export("keras.metrics.AUC")
class AUC(base_metric.Metric):
"""Approximates the AUC (Area under the curve) of the ROC or PR curves.
The AUC (Area under the curve) of the ROC (Receiver operating
characteristic; default) or PR (Precision Recall) curves are quality
measures of binary classifiers. Unlike the accuracy, and like cross-entropy
losses, ROC-AUC and PR-AUC evaluate all the operational points of a model.
This class approximates AUCs using a Riemann sum. During the metric
accumulation phrase, predictions are accumulated within predefined buckets
by value. The AUC is then computed by interpolating per-bucket averages.
These buckets define the evaluated operational points.
This metric creates four local variables, `true_positives`,
`true_negatives`, `false_positives` and `false_negatives` that are used to
compute the AUC. To discretize the AUC curve, a linearly spaced set of
thresholds is used to compute pairs of recall and precision values. The area
under the ROC-curve is therefore computed using the height of the recall
values by the false positive rate, while the area under the PR-curve is the
computed using the height of the precision values by the recall.
This value is ultimately returned as `auc`, an idempotent operation that
computes the area under a discretized curve of precision versus recall
values (computed using the aforementioned variables). The `num_thresholds`
variable controls the degree of discretization with larger numbers of
thresholds more closely approximating the true AUC. The quality of the
approximation may vary dramatically depending on `num_thresholds`. The
`thresholds` parameter can be used to manually specify thresholds which
split the predictions more evenly.
For a best approximation of the real AUC, `predictions` should be
distributed approximately uniformly in the range [0, 1] (if
`from_logits=False`). The quality of the AUC approximation may be poor if
this is not the case. Setting `summation_method` to 'minoring' or 'majoring'
can help quantify the error in the approximation by providing lower or upper
bound estimate of the AUC.
If `sample_weight` is `None`, weights default to 1.
Use `sample_weight` of 0 to mask values.
Args:
num_thresholds: (Optional) Defaults to 200. The number of thresholds to
use when discretizing the roc curve. Values must be > 1.
curve: (Optional) Specifies the name of the curve to be computed, 'ROC'
[default] or 'PR' for the Precision-Recall-curve.
summation_method: (Optional) Specifies the [Riemann summation method](
https://en.wikipedia.org/wiki/Riemann_sum) used.
'interpolation' (default) applies mid-point summation scheme for
`ROC`. For PR-AUC, interpolates (true/false) positives but not the
ratio that is precision (see Davis & Goadrich 2006 for details);
'minoring' applies left summation for increasing intervals and right
summation for decreasing intervals; 'majoring' does the opposite.
name: (Optional) string name of the metric instance.
dtype: (Optional) data type of the metric result.
thresholds: (Optional) A list of floating point values to use as the
thresholds for discretizing the curve. If set, the `num_thresholds`
parameter is ignored. Values should be in [0, 1]. Endpoint thresholds
equal to {-epsilon, 1+epsilon} for a small positive epsilon value will
be automatically included with these to correctly handle predictions
equal to exactly 0 or 1.
multi_label: boolean indicating whether multilabel data should be
treated as such, wherein AUC is computed separately for each label and
then averaged across labels, or (when False) if the data should be
flattened into a single label before AUC computation. In the latter
case, when multilabel data is passed to AUC, each label-prediction pair
is treated as an individual data point. Should be set to False for
multi-class data.
num_labels: (Optional) The number of labels, used when `multi_label` is
True. If `num_labels` is not specified, then state variables get created
on the first call to `update_state`.
label_weights: (Optional) list, array, or tensor of non-negative weights
used to compute AUCs for multilabel data. When `multi_label` is True,
the weights are applied to the individual label AUCs when they are
averaged to produce the multi-label AUC. When it's False, they are used
to weight the individual label predictions in computing the confusion
matrix on the flattened data. Note that this is unlike class_weights in
that class_weights weights the example depending on the value of its
label, whereas label_weights depends only on the index of that label
before flattening; therefore `label_weights` should not be used for
multi-class data.
from_logits: boolean indicating whether the predictions (`y_pred` in
`update_state`) are probabilities or sigmoid logits. As a rule of thumb,
when using a keras loss, the `from_logits` constructor argument of the
loss should match the AUC `from_logits` constructor argument.
Standalone usage:
>>> m = tf.keras.metrics.AUC(num_thresholds=3)
>>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9])
>>> # threshold values are [0 - 1e-7, 0.5, 1 + 1e-7]
>>> # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2]
>>> # tp_rate = recall = [1, 0.5, 0], fp_rate = [1, 0, 0]
>>> # auc = ((((1+0.5)/2)*(1-0)) + (((0.5+0)/2)*(0-0))) = 0.75
>>> m.result().numpy()
0.75
>>> m.reset_state()
>>> m.update_state([0, 0, 1, 1], [0, 0.5, 0.3, 0.9],
... sample_weight=[1, 0, 0, 1])
>>> m.result().numpy()
1.0
Usage with `compile()` API:
```python
# Reports the AUC of a model outputting a probability.
model.compile(optimizer='sgd',
loss=tf.keras.losses.BinaryCrossentropy(),
metrics=[tf.keras.metrics.AUC()])
# Reports the AUC of a model outputting a logit.
model.compile(optimizer='sgd',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.AUC(from_logits=True)])
```
"""
@dtensor_utils.inject_mesh
def __init__(
self,
num_thresholds=200,
curve="ROC",
summation_method="interpolation",
name=None,
dtype=None,
thresholds=None,
multi_label=False,
num_labels=None,
label_weights=None,
from_logits=False,
):
# Validate configurations.
if isinstance(curve, metrics_utils.AUCCurve) and curve not in list(
metrics_utils.AUCCurve
):
raise ValueError(
f'Invalid `curve` argument value "{curve}". '
f"Expected one of: {list(metrics_utils.AUCCurve)}"
)
if isinstance(
summation_method, metrics_utils.AUCSummationMethod
) and summation_method not in list(metrics_utils.AUCSummationMethod):
raise ValueError(
"Invalid `summation_method` "
f'argument value "{summation_method}". '
f"Expected one of: {list(metrics_utils.AUCSummationMethod)}"
)
# Update properties.
self._init_from_thresholds = thresholds is not None
if thresholds is not None:
# If specified, use the supplied thresholds.
self.num_thresholds = len(thresholds) + 2
thresholds = sorted(thresholds)
self._thresholds_distributed_evenly = (
metrics_utils.is_evenly_distributed_thresholds(
np.array([0.0] + thresholds + [1.0])
)
)
else:
if num_thresholds <= 1:
raise ValueError(
"Argument `num_thresholds` must be an integer > 1. "
f"Received: num_thresholds={num_thresholds}"
)
# Otherwise, linearly interpolate (num_thresholds - 2) thresholds in
# (0, 1).
self.num_thresholds = num_thresholds
thresholds = [
(i + 1) * 1.0 / (num_thresholds - 1)
for i in range(num_thresholds - 2)
]
self._thresholds_distributed_evenly = True
# Add an endpoint "threshold" below zero and above one for either
# threshold method to account for floating point imprecisions.
self._thresholds = np.array(
[0.0 - backend.epsilon()] + thresholds + [1.0 + backend.epsilon()]
)
if isinstance(curve, metrics_utils.AUCCurve):
self.curve = curve
else:
self.curve = metrics_utils.AUCCurve.from_str(curve)
if isinstance(summation_method, metrics_utils.AUCSummationMethod):
self.summation_method = summation_method
else:
self.summation_method = metrics_utils.AUCSummationMethod.from_str(
summation_method
)
super().__init__(name=name, dtype=dtype)
# Handle multilabel arguments.
self.multi_label = multi_label
self.num_labels = num_labels
if label_weights is not None:
label_weights = tf.constant(label_weights, dtype=self.dtype)
tf.debugging.assert_non_negative(
label_weights,
message="All values of `label_weights` must be non-negative.",
)
self.label_weights = label_weights
else:
self.label_weights = None
self._from_logits = from_logits
self._built = False
if self.multi_label:
if num_labels:
shape = tf.TensorShape([None, num_labels])
self._build(shape)
else:
if num_labels:
raise ValueError(
"`num_labels` is needed only when `multi_label` is True."
)
self._build(None)
@property
def thresholds(self):
"""The thresholds used for evaluating AUC."""
return list(self._thresholds)
def _build(self, shape):
"""Initialize TP, FP, TN, and FN tensors, given the shape of the
data."""
if self.multi_label:
if shape.ndims != 2:
raise ValueError(
"`y_true` must have rank 2 when `multi_label=True`. "
f"Found rank {shape.ndims}. "
f"Full shape received for `y_true`: {shape}"
)
self._num_labels = shape[1]
variable_shape = tf.TensorShape(
[self.num_thresholds, self._num_labels]
)
else:
variable_shape = tf.TensorShape([self.num_thresholds])
self._build_input_shape = shape
# Create metric variables
self.true_positives = self.add_weight(
"true_positives", shape=variable_shape, initializer="zeros"
)
self.true_negatives = self.add_weight(
"true_negatives", shape=variable_shape, initializer="zeros"
)
self.false_positives = self.add_weight(
"false_positives", shape=variable_shape, initializer="zeros"
)
self.false_negatives = self.add_weight(
"false_negatives", shape=variable_shape, initializer="zeros"
)
if self.multi_label:
with tf.init_scope():
# This should only be necessary for handling v1 behavior. In v2,
# AUC should be initialized outside of any tf.functions, and
# therefore in eager mode.
if not tf.executing_eagerly():
backend._initialize_variables(backend._get_session())
self._built = True
def update_state(self, y_true, y_pred, sample_weight=None):
"""Accumulates confusion matrix statistics.
Args:
y_true: The ground truth values.
y_pred: The predicted values.
sample_weight: Optional weighting of each example. Defaults to 1. Can
be a `Tensor` whose rank is either 0, or the same rank as `y_true`,
and must be broadcastable to `y_true`.
Returns:
Update op.
"""
if not self._built:
self._build(tf.TensorShape(y_pred.shape))
if self.multi_label or (self.label_weights is not None):
# y_true should have shape (number of examples, number of labels).
shapes = [(y_true, ("N", "L"))]
if self.multi_label:
# TP, TN, FP, and FN should all have shape
# (number of thresholds, number of labels).
shapes.extend(
[
(self.true_positives, ("T", "L")),
(self.true_negatives, ("T", "L")),
(self.false_positives, ("T", "L")),
(self.false_negatives, ("T", "L")),
]
)
if self.label_weights is not None:
# label_weights should be of length equal to the number of
# labels.
shapes.append((self.label_weights, ("L",)))
tf.debugging.assert_shapes(
shapes, message="Number of labels is not consistent."
)
# Only forward label_weights to update_confusion_matrix_variables when
# multi_label is False. Otherwise the averaging of individual label AUCs
# is handled in AUC.result
label_weights = None if self.multi_label else self.label_weights
if self._from_logits:
y_pred = activations.sigmoid(y_pred)
return metrics_utils.update_confusion_matrix_variables(
{
metrics_utils.ConfusionMatrix.TRUE_POSITIVES: self.true_positives, # noqa: E501
metrics_utils.ConfusionMatrix.TRUE_NEGATIVES: self.true_negatives, # noqa: E501
metrics_utils.ConfusionMatrix.FALSE_POSITIVES: self.false_positives, # noqa: E501
metrics_utils.ConfusionMatrix.FALSE_NEGATIVES: self.false_negatives, # noqa: E501
},
y_true,
y_pred,
self._thresholds,
thresholds_distributed_evenly=self._thresholds_distributed_evenly,
sample_weight=sample_weight,
multi_label=self.multi_label,
label_weights=label_weights,
)
def interpolate_pr_auc(self):
"""Interpolation formula inspired by section 4 of Davis & Goadrich 2006.
https://www.biostat.wisc.edu/~page/rocpr.pdf
Note here we derive & use a closed formula not present in the paper
as follows:
Precision = TP / (TP + FP) = TP / P
Modeling all of TP (true positive), FP (false positive) and their sum
P = TP + FP (predicted positive) as varying linearly within each
interval [A, B] between successive thresholds, we get
Precision slope = dTP / dP
= (TP_B - TP_A) / (P_B - P_A)
= (TP - TP_A) / (P - P_A)
Precision = (TP_A + slope * (P - P_A)) / P
The area within the interval is (slope / total_pos_weight) times
int_A^B{Precision.dP} = int_A^B{(TP_A + slope * (P - P_A)) * dP / P}
int_A^B{Precision.dP} = int_A^B{slope * dP + intercept * dP / P}
where intercept = TP_A - slope * P_A = TP_B - slope * P_B, resulting in
int_A^B{Precision.dP} = TP_B - TP_A + intercept * log(P_B / P_A)
Bringing back the factor (slope / total_pos_weight) we'd put aside, we
get
slope * [dTP + intercept * log(P_B / P_A)] / total_pos_weight
where dTP == TP_B - TP_A.
Note that when P_A == 0 the above calculation simplifies into
int_A^B{Precision.dTP} = int_A^B{slope * dTP} = slope * (TP_B - TP_A)
which is really equivalent to imputing constant precision throughout the
first bucket having >0 true positives.
Returns:
pr_auc: an approximation of the area under the P-R curve.
"""
dtp = (
self.true_positives[: self.num_thresholds - 1]
- self.true_positives[1:]
)
p = tf.math.add(self.true_positives, self.false_positives)
dp = p[: self.num_thresholds - 1] - p[1:]
prec_slope = tf.math.divide_no_nan(
dtp, tf.maximum(dp, 0), name="prec_slope"
)
intercept = self.true_positives[1:] - tf.multiply(prec_slope, p[1:])
safe_p_ratio = tf.where(
tf.logical_and(p[: self.num_thresholds - 1] > 0, p[1:] > 0),
tf.math.divide_no_nan(
p[: self.num_thresholds - 1],
tf.maximum(p[1:], 0),
name="recall_relative_ratio",
),
tf.ones_like(p[1:]),
)
pr_auc_increment = tf.math.divide_no_nan(
prec_slope * (dtp + intercept * tf.math.log(safe_p_ratio)),
tf.maximum(self.true_positives[1:] + self.false_negatives[1:], 0),
name="pr_auc_increment",
)
if self.multi_label:
by_label_auc = tf.reduce_sum(
pr_auc_increment, name=self.name + "_by_label", axis=0
)
if self.label_weights is None:
# Evenly weighted average of the label AUCs.
return tf.reduce_mean(by_label_auc, name=self.name)
else:
# Weighted average of the label AUCs.
return tf.math.divide_no_nan(
tf.reduce_sum(
tf.multiply(by_label_auc, self.label_weights)
),
tf.reduce_sum(self.label_weights),
name=self.name,
)
else:
return tf.reduce_sum(pr_auc_increment, name="interpolate_pr_auc")
def result(self):
if (
self.curve == metrics_utils.AUCCurve.PR
and self.summation_method
== metrics_utils.AUCSummationMethod.INTERPOLATION
):
# This use case is different and is handled separately.
return self.interpolate_pr_auc()
# Set `x` and `y` values for the curves based on `curve` config.
recall = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_negatives),
)
if self.curve == metrics_utils.AUCCurve.ROC:
fp_rate = tf.math.divide_no_nan(
self.false_positives,
tf.math.add(self.false_positives, self.true_negatives),
)
x = fp_rate
y = recall
else: # curve == 'PR'.
precision = tf.math.divide_no_nan(
self.true_positives,
tf.math.add(self.true_positives, self.false_positives),
)
x = recall
y = precision
# Find the rectangle heights based on `summation_method`.
if (
self.summation_method
== metrics_utils.AUCSummationMethod.INTERPOLATION
):
# Note: the case ('PR', 'interpolation') has been handled above.
heights = (y[: self.num_thresholds - 1] + y[1:]) / 2.0
elif self.summation_method == metrics_utils.AUCSummationMethod.MINORING:
heights = tf.minimum(y[: self.num_thresholds - 1], y[1:])
# self.summation_method = metrics_utils.AUCSummationMethod.MAJORING:
else:
heights = tf.maximum(y[: self.num_thresholds - 1], y[1:])
# Sum up the areas of all the rectangles.
if self.multi_label:
riemann_terms = tf.multiply(
x[: self.num_thresholds - 1] - x[1:], heights
)
by_label_auc = tf.reduce_sum(
riemann_terms, name=self.name + "_by_label", axis=0
)
if self.label_weights is None:
# Unweighted average of the label AUCs.
return tf.reduce_mean(by_label_auc, name=self.name)
else:
# Weighted average of the label AUCs.
return tf.math.divide_no_nan(
tf.reduce_sum(
tf.multiply(by_label_auc, self.label_weights)
),
tf.reduce_sum(self.label_weights),
name=self.name,
)
else:
return tf.reduce_sum(
tf.multiply(x[: self.num_thresholds - 1] - x[1:], heights),
name=self.name,
)
def reset_state(self):
if self._built:
confusion_matrix_variables = (
self.true_positives,
self.true_negatives,
self.false_positives,
self.false_negatives,
)
if self.multi_label:
backend.batch_set_value(
[
(v, np.zeros((self.num_thresholds, self._num_labels)))
for v in confusion_matrix_variables
]
)
else:
backend.batch_set_value(
[
(v, np.zeros((self.num_thresholds,)))
for v in confusion_matrix_variables
]
)
def get_config(self):
if is_tensor_or_variable(self.label_weights):
label_weights = backend.eval(self.label_weights)
else:
label_weights = self.label_weights
config = {
"num_thresholds": self.num_thresholds,
"curve": self.curve.value,
"summation_method": self.summation_method.value,
"multi_label": self.multi_label,
"num_labels": self.num_labels,
"label_weights": label_weights,
"from_logits": self._from_logits,
}
# optimization to avoid serializing a large number of generated
# thresholds
if self._init_from_thresholds:
# We remove the endpoint thresholds as an inverse of how the
# thresholds were initialized. This ensures that a metric
# initialized from this config has the same thresholds.
config["thresholds"] = self.thresholds[1:-1]
base_config = super().get_config()
return dict(list(base_config.items()) + list(config.items()))